Skip to main content
Log in

Study of multiplicity dependence of pion fluctuations in \(\pi ^{-}\)–AgBr collisions at 350 GeV using complex network approach

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

A complex network and chaos-based method, based on the visibility graph algorithm, is applied to study particle fluctuations in \(\pi ^{-}\)–AgBr interactions at 350 GeV with respect to the shower multiplicity dependence. The fractal structure of the fluctuations is studied by using the power of scale freeness of visibility graph (PSVG). The selection of visibility graph as the type of complex network for our analysis is justified as this algorithm gives the most precise result with finite number of data points and this experiment has finite number of events. The topological parameters along with PSVG values are extracted and analysed. The analysis shows that the fractality character is weaker for the lowest multiplicity bin and is stronger for the highest multiplicity bin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A Bialas and R Peschanski, Nucl. Phys. B 273, 703 (1986)

    Article  ADS  Google Scholar 

  2. A Bialas and R Peschanski, Nucl. Phys. B 308, 857 (1988)

    Article  ADS  Google Scholar 

  3. E De Wolf, I Dremin and W Kittel, Phys. Rep. 270, 1 (1996)

  4. R Hwa, Phys. Rev. D 41, 1456 (1990)

  5. A V G Paladin, Fractals 3(4), 785 (1995)

    Article  Google Scholar 

  6. I P P Grassberger, Physica D 13, 34 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  7. M J T C Halsey, L Kadanoff, I Procaccia and B Shriman, Phys. Rev. A 33, 1141 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  8. F Takagi, Phys. Rev. Lett. 72, 32 (1994)

    Article  ADS  Google Scholar 

  9. M  Newman, A Barabasi and D Watts (Eds), The structure and dynamics of networks (Princeton University Press, 2006)

  10. S Boccaletti, V Latora, Y Moreno, M Chavez and D Hwang, Phys. Rep. 424, 175 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  11. R Cohen, Complex networks structure, robustness and function, 1st edn (Cambridge University Press, 2014)

  12. L Lacasa, B Luque, F Ballesteros, J Luque and J C Nuno, Proc. Natl Acad. Sci. 105, 4972 (2008)

    Article  ADS  Google Scholar 

  13. L Lacasa, B Luque, J Luque and J C Nuno, Europhys. Lett. 86(3), 30001 (2009)

  14. S Bhaduri and D Ghosh, Int. J. Mod. Phys. A 31, 1650185 (2016)

    Article  ADS  Google Scholar 

  15. S Bhaduri and D Ghosh, Acta Phys. Pol. B 48, 741 (2017)

    Article  ADS  Google Scholar 

  16. S Bhaduri and D Ghosh, Mod. Phys. Lett. A 31, 1650158 (2016)

    Article  ADS  Google Scholar 

  17. S Bhaduri, A Bhaduri and D Ghosh, Eur. Phys. J. A 53, 135 (2017)

    Article  ADS  Google Scholar 

  18. A Bhaduri, S Bhaduri and D Ghosh, Phys. Part. Nucl. Lett. 14, 576 (2017)

    Article  Google Scholar 

  19. M Ahmadlou, H Adeli and A Adeli, Phys. A: Stat. Mech. Appl. 391(20), 4720 (2012)

    Article  Google Scholar 

  20. E Estrada, Phys. Rev. E 82, 066102 (2010)

    Article  ADS  Google Scholar 

  21. D J J Watts and S H H Strogatz, Nature 393, 440 (1998)

    Article  ADS  Google Scholar 

  22. S C Carlson, Graph theory, https://doi.org/10.1007/978-1-84628-970-5 (2014)

  23. D B Johnson, J. ACM 24, 1 (1977)

    Article  Google Scholar 

  24. M E J Newman, Phys. Rev. Lett. 89, 208701 (2002)

    Article  ADS  Google Scholar 

  25. R Albert and A-L Barabási, Rev. Mod. Phys. 74, 47 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  26. C Ye, R C Wilson, C H Comin, L da F Costa and E R Hancock, Entropy and heterogeneity measures for directed graphs (Springer, Berlin, Heidelberg, 2013)

    Book  Google Scholar 

  27. A D Dipak Ghosh, S Bhattacharyya and U Datta, J. Phys. G 39(3), 035101 (2012)

  28. C F  Powell, P H Fowler and D H Perkins, The study elementary particles by the photographic method (Pergamon Press, Oxford, 1959)

  29. S Jiang, C Bian, X Ning and Q D Y Ma, Appl. Phys. Lett. 102(25), 253 (2013)

    Google Scholar 

  30. D Ghosh, A Deb, S Bhattacharyya and U Datta, Phys. Scr. 85(6), 065205 (2012)

    Article  ADS  Google Scholar 

  31. K Pearson, Philos. Mag. Ser. 5 50(302), 157 (1900)

  32. A Clauset, C R Shalizi and M E J Newman, SIAM Rev. 51, 661 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  33. D Ghosh, A Deb and S Dutta, Can. J. Phys. 86(5), 751 (2008)

    Article  ADS  Google Scholar 

  34. A-L Barabási, Nature Phys. 8, 14 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the Department of Higher Education, Government of West Bengal, India, for logistics support of computational analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susmita Bhaduri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhaduri, S., Bhaduri, A. & Ghosh, D. Study of multiplicity dependence of pion fluctuations in \(\pi ^{-}\)–AgBr collisions at 350 GeV using complex network approach. Pramana - J Phys 92, 4 (2019). https://doi.org/10.1007/s12043-018-1664-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-018-1664-4

Keyword

PACS No

Navigation