Skip to main content
Log in

Analysis of vibration of pendulum arm under bursting oscillation excitation

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We investigate numerically the responses of the single pendulum and double pendulum arms coupled to a nonlinear RLC-circuit shaker through a magnetic field. These systems can be used to build a robotic device or an automat. The nonlinear RLC circuit is a Duffing oscillator that generates electric bursting oscillations. We first examine the dynamical behaviour of the single pendulum arm. Time series shows that the pendulum arm exhibits bursting oscillation. When the natural frequency \(w_2 <1\), the shape of the bursting in the electrical part is different from that observed in the pendulum arm and if \(w_2 >1\), the shape is the same. We then explore the behaviour of a double pendulum arm powered by electric bursting oscillations. Time series are also used to explore the behaviour of each pendulum arm. The results show that the displacement of each pendulum arm undergoes bursting oscillations resulting from the transfer of the electronic signal. The shape of bursting of the first pendulum is different from that of the second pendulum for some values of \(w_1 \). The shape, period and amplitude of the bursting oscillations depend on various control parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J Yang, Y P Xiong and J T Xing, Mech. Syst. Signal. Process. 45(2), 563 (2014)

    Article  ADS  Google Scholar 

  2. H K Roy, A S Das and J K Dutt, Mech. Mach. Theory  98, 48 (2016)

    Article  Google Scholar 

  3. H Simo and P Woafo, Int. J. Birfuc. Chaos 22, 1 (2012)

    Google Scholar 

  4. Y S Kondji, K G Fautso and P Woafo, Phys. Scr. 81, 015010 (2010)

    Article  ADS  Google Scholar 

  5. P R Venkatesh and A Venkatesan, Pramana – J. Phys. 87(1): 3 (2016)

  6. B Qinsheng, C Xiaoke, K Juergen and Z Zhengdi, Nonlinear Dyn. 85, 2233 (2016)

    Article  Google Scholar 

  7. C A Chamgoué, R Yamapi and P Woafo, Eur. Phys. J. Plus 127, 59 (2012)

    Article  Google Scholar 

  8. B Pal, D Dutta and S Poria, Pramana – J. Phys. 89: 32 (2016)

  9. G S M Ngueteu and P Woafo, Mech. Res. Commun. 46, 20 (2012)

    Article  Google Scholar 

  10. K C A Kitio, B Nana and P Woafo, J. Sound. Vib. 329(15), 3137 (2010)

    Article  ADS  Google Scholar 

  11. A C J Luo and F Wang, Commun. Nonlinear Sci. Numer. Simul. 7(1), 31 (2002)

    Article  ADS  Google Scholar 

  12. N G S Mbouna, R Yamapi and P Woafo, Commun. Nonlinear Sci. Numer. Simul. 13(7), 1213 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  13. T Sze-Hong, C Kok-Hong, W Ko-Choong and D Hazem, Int. J. Nonlinear Mech. 70, 73 (2015)

    Article  Google Scholar 

  14. M J Clifford and S R Bishop, Phys. Lett. A 201, 191 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  15. M J Clifford and S R Bishop, J. Aust. Math. Soc. B – Appl. Math. 37, 309 (1996)

    Article  Google Scholar 

  16. J L P Felix, J M Balthazar and R M L R F Brasil, J. Vib. Control 11(1), 121 (2005)

    Article  Google Scholar 

  17. H A Rafael, A N Hélio, M L R R B Reyolando, M B José, A B Madureira and M T Angelo, Meccanica 51(6), 1301 (2015)

    Google Scholar 

  18. D Sado and K Gajos, J. Theor. Appl. Math. 46, 141 (2008)

    Google Scholar 

  19. M T Angelo, V Piccirillo, M B Actila, J M Balthazar, S Danuta, L P F Jorge and R L R F B Manoel, J. Vib. Control 1, 17 (2015)

    Google Scholar 

  20. D Yurchenko and P Alevras, Mech. Syst. Signal Process. 99(15), 515 (2018)

    Google Scholar 

  21. P Alevras, I Brown and D Yurchenko, Nonlinear Dyn. 81(1), 201(2015)

    Article  Google Scholar 

  22. T Sze-Hong, W Ko-Choong and H Demrdash, J. Comput. Nonlinear. Dyn. 13(1), 011006 (2017)

    Article  Google Scholar 

  23. T Sze-Hong, W Ko-Choong and H Demrdash, J. Theor. Appl. Mech. 54(3), 730 (2016)

    Google Scholar 

  24. S T Kingni, B Nana, M G S Ngueuteu, P Woafo and J Danckaert, Chaos Solitons Fractals 71, 29 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  25. H Xiujing, J Bo and Q S Bi, Nonlinear Dyn. 61(4), 667 (2010)

    Article  Google Scholar 

  26. M E Izhikevich, Dyn. Syst. Neurosci. 50(2), 397 (2008)

    Google Scholar 

  27. Q S Bi and Z D Zhang, Phys. Lett. A 3750, 1183 (2011)

    Article  ADS  Google Scholar 

  28. O Decroly and A Goldebeter, J. Theor. Biol. 124, 219 (1987)

    Article  Google Scholar 

  29. Q Bi, C Xiaoke, K Juergen and Z Zhengdi, Nonlinear Dyn. 85(4), 2233 (2016)

    Article  Google Scholar 

  30. H Simo and P Woafo, Optik 127(20), 8760 (2016)

    Article  ADS  Google Scholar 

  31. L T Abobda and P Woafo, Commun. Nonlinear Sci. Numer. Simul. 17(7), 3082 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  32. U Simo Domguia, L T Abobda and P Woafo, J. Comput. Nonlinear Dyn. 11(5), 051006 (2016)

    Article  Google Scholar 

  33. H Simo and P Woafo, Mech. Res. Commun. 38(8), 537 (2011)

    Article  Google Scholar 

  34. U Simo Domguia, M V Tchakui, H Simo and P Woafo, J. Vib. Acoust. 136(6), 061017 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

Part of this work was done at the Indian Institute of Technology Delhi (IIT Delhi, India) during the research stay of H Simo. H Simo is grateful for the financial support provided by the C V Raman International Fellowship for African researchers under the ‘Visiting Fellowship’ scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herve Simo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simo, H., Domguia, U.S., Dutt, J.K. et al. Analysis of vibration of pendulum arm under bursting oscillation excitation. Pramana - J Phys 92, 3 (2019). https://doi.org/10.1007/s12043-018-1661-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-018-1661-7

Keywords

PACS Nos

Navigation