Time growth rate optimisation of terahertz electromagnetic wave generation by converting occupied plasma region from annular plasma to filled plasma in the core, in an elliptical Cherenkov maser with two energy sources

Abstract

In this work, a comparison between two different cases of an elliptical Cherenkov maser with two electron beams for the generation and amplification of terahertz electromagnetic waves has been presented. The waveguide is made of a hollow dielectric layer filled with a cold collisionless unmagnetised plasma. In the above-mentioned configuration, there are two electron beams with opposite velocities. The dispersion relation graph and its characteristics, such as its dependence on geometrical dimensions and characteristics of the electron beam, are presented. The growth rates of the hybrid modes are numerically calculated and their diagrams in some operating frequencies are studied. The effective factors on the time growth rate of hybrid electromagnetic waves, such as geometrical dimensions, dielectric constant of the dielectric layer, accelerating voltage, plasma frequency and applied current intensity, are analysed. It is shown that the injection of background plasma into the core region of the waveguide can enhance the output frequency and the wave growth rate of the beam–wave interaction.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    B Ferguson and X C Zhang, Nat. Mater. 1, 26 (2002)

    ADS  Article  Google Scholar 

  2. 2.

    Y C Shen, T W P F Today, B E Cole, W R Tribe and M C Kemp, Appl. Phys. Lett. 86, 241116 (2005)

    ADS  Article  Google Scholar 

  3. 3.

    H Zheng, A Redo-Sanchez and X C Zhang, Opt. Express 14, 9130 (2006)

    ADS  Article  Google Scholar 

  4. 4.

    W Xie, Z C Wang, J Luo and D Zhao, Phys. Plasmas 22, 042307 (2015)

    ADS  Article  Google Scholar 

  5. 5.

    X Jixiong, C Shixiu, T Wei and C Kun, High Power Laser Part. 6, 030 (2014)

    Google Scholar 

  6. 6.

    B Shokri, H Ghomi and H Latifi, Phys. Plasmas 7, 2671 (2000)

    ADS  Article  Google Scholar 

  7. 7.

    J Wu, Int. J. Electron. 92(11), 661 (2005)

    Article  Google Scholar 

  8. 8.

    H Kosai, E Garate and A Fisher, IEEE Trans. Plasma Sci. 18, 1002 (1990)

    ADS  Article  Google Scholar 

  9. 9.

    B Shokri and B Jazi, Phys. Lett. A 336, 477 (2005)

    ADS  Article  Google Scholar 

  10. 10.

    B Jazi, M Nejati and B Shokri, Phys. Lett. A 360, 319 (2007)

    ADS  Article  Google Scholar 

  11. 11.

    B Jazi, Z Rahmani, E Heidari-Semiromi and A Abdoli-Arani, Phys. Plasmas 19, 102110 (2012)

    ADS  Article  Google Scholar 

  12. 12.

    Z Rahmani, B Jazi and E Heidari-Semiromi, Phys. Plasmas 21, 092122 (2014)

    ADS  Article  Google Scholar 

  13. 13.

    Z Rahmani, E Heidari-Semiromi and S Safari, Phys. Plasmas 23, 062113 (2016)

    ADS  Article  Google Scholar 

  14. 14.

    S Safari, B Jazi and S Jahanbakht, Phys. Plasmas 23, 083110 (2016)

    ADS  Article  Google Scholar 

  15. 15.

    S Safari and B Jazi, IEEE Trans. Plasma Sci. 44, 2356 (2016)

    ADS  Article  Google Scholar 

  16. 16.

    S Safari and B Jazi, Phys. Plasmas 24, 052106 (2017)

    ADS  Article  Google Scholar 

  17. 17.

    B I Aronov, L S Bogdankevich and A A Rukhadze, Plasma Phys. 18, 101 (1976)

    ADS  Article  Google Scholar 

  18. 18.

    L S Bogdankevich and A A Rukhadze, Sov. Phys. Tech. Phys. 25, 143 (1980)

    ADS  Google Scholar 

  19. 19.

    L S Bogdankevich, M V Kuzelev and A A Rukhadze, Sov. Phys. Tech. Phys. 25, 143 (1980)

    ADS  Google Scholar 

  20. 20.

    N W McLachlan, Theory and application of Mathieu functions (Dover, New York, 1964)

    Google Scholar 

  21. 21.

    K Halterman, S Feng and P L Overfelt, Phys. Rev. A 76, 013834 (2007)

    ADS  Article  Google Scholar 

  22. 22.

    C Yeh, J. Appl. Phys. 33, 3235 1962

    ADS  Article  Google Scholar 

  23. 23.

    L Hui-Rong and Y Jian-Ping, Chin. Phys. B 19, 083204 (2010)

    ADS  Article  Google Scholar 

  24. 24.

    C Yeh, IEEE Trans. Antennas Propag. 11, 177184 (1963)

    Google Scholar 

  25. 25.

    R C Davidson, Physics of nonneutral plasmas (Addison-Wesley, Redwood, 1990)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Samaneh Safari.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Safari, S., Jazi, B. Time growth rate optimisation of terahertz electromagnetic wave generation by converting occupied plasma region from annular plasma to filled plasma in the core, in an elliptical Cherenkov maser with two energy sources. Pramana - J Phys 91, 80 (2018). https://doi.org/10.1007/s12043-018-1655-5

Download citation

Keywords

  • Two-stream instability
  • elliptical waveguide
  • millimetre wave amplifiers
  • particle beams

PACS Nos

  • 52.35.g
  • 52.35.Qz
  • 52.40.Mj
  • 52.40.Fd
  • 52.35.Hr