Skip to main content
Log in

Design and study on square lattice-based photonic crystal fibre under different air holes for supercontinuum generation

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this work, a comparative study is made on photonic crystal fibre (PCF) with circular and elliptical air holes in square lattice for supercontinuum generation. Using finite-element method analysis in COMSOL MULTIPHYSICS 4.3b software, numerical investigation on optical parameters such as dispersion, confinement loss, birefringence and nonlinearity has been carried out. Change in each optical parameter is observed by varying the radius of the circular air hole and the radius of the major axis of the elliptical air hole. The supercontinuum generation for the proposed PCF is also numerically simulated and studied under different power and pulse width.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. P S J Russell, J. Light Technol. 24, 4729 (2006)

    Article  Google Scholar 

  2. Md I Islam, M Khatun and K Ahmed, Opt. Rev. 24, 147 (2017)

    Article  Google Scholar 

  3. M Sharma and S Konar, Opt. Commun. 380, 310 (2016)

    Article  ADS  Google Scholar 

  4. P S Maji and P R Chaudhuri, Appl. Opt. 54, 4042 (2015)

    Article  ADS  Google Scholar 

  5. A A Nair, S K Sudheer and M Jayaraju, Int. J. Eng. Adv. Technol. 3, 1 (2014)

    Google Scholar 

  6. E K Akowuah, T Gorman, H Ademgil, S Haxha, G K Robinson and J V Oliver, IEEE J. Quantum Electron. 48, 1403 (2012)

    Article  ADS  Google Scholar 

  7. A Medjouri, L M Simohamed, O Ziane and A Boudrioua, Optik 126, 2269 (2015)

    Article  ADS  Google Scholar 

  8. S Olyaee and F Taghipour, IET Optoelectron. 6, 82 (2012)

    Article  Google Scholar 

  9. M Eguchi and Y Tsuji, J. Opt. Soc. Am. B 24, 750 (2007)

    Article  ADS  Google Scholar 

  10. S Habib, S Habib, S M A Razzak and A Hossain, Opt. Fiber Technol. 19, 461 (2013)

    Article  ADS  Google Scholar 

  11. A A Nair, S K Sudheer and M Jayaraju, Design and simulation of octagonal photonic crystal fiber for supercontinuum generation, in: V Lakshminarayanan and I Bhattacharya (eds) Advances in optical science and engineering, Springer Proceedings in Physics (Springer, New Delhi, 2015) Vol. 166, p. 195

    Google Scholar 

  12. J Wu, W Zhang, G Zhou, C Xia, J Liu, Y Zheng, H Tian and Z Hou, Laser Phys. 25, 055105-1 (2015)

    Article  ADS  Google Scholar 

  13. P S Maji and P R Chaudhuri, ISRN Opt. 2014, 1 (2014)

    Article  Google Scholar 

  14. A H Bouk, A Cucinotta, F Poli and S Selleri, Opt. Express 12, 941 (2004)

    Article  ADS  Google Scholar 

  15. A Ferrando and J J Miret, Appl. Phys. Lett. 78, 3184 (2001)

    Article  ADS  Google Scholar 

  16. L Rosa, F Poli, M Foroni, A Cucinotta and S Selleri, Opt. Lett. 41, 441 (2006)

    Article  ADS  Google Scholar 

  17. J Liao and J Sun, Opt. Fiber Technol. 18, 457 (2012)

    Article  ADS  Google Scholar 

  18. H Demir and S Ozsoy, Opt. Fiber Technol. 17, 594 (2011)

    Article  ADS  Google Scholar 

  19. D Kumar, A Sharma and S Mani, Opt. Laser Technol. 96, 97 (2017)

    Article  Google Scholar 

  20. B Dabas and R K Sinha, Opt. Commun. 283, 1331 (2010)

    Article  ADS  Google Scholar 

  21. P S Maji and P Roy Chaudhuri, J. Opt. Soc. Korea 18, 207 (2014)

    Article  Google Scholar 

  22. L Wang and D Yang, Opt. Express 15, 8892 (2007)

    Article  ADS  Google Scholar 

  23. B Hu, M Lu, W N Li, K S Zou, Z G Zhou, A X Lin and N Li, Appl. Opt. 49, 6098 (2010)

    Article  ADS  Google Scholar 

  24. Y Zhao, S Li, Q Liu and X Wang, Opt. Mater. 73, 638 (2017)

    Article  ADS  Google Scholar 

  25. H Zhanqiang, Y Zhang, H Zhou, Z Wang and X Zeng, Fiber Integr. Opt. 37, 21 (2018)

    Article  ADS  Google Scholar 

  26. P Jamatia, T S Saini, A Kumar and R K Sinha, Appl. Opt. 55, 6775 (2016)

    Article  ADS  Google Scholar 

  27. A Kudlinski, A K George, J C Knight, J C Travers, A B Rulkov, S V Popov and J R Taylor, Opt. Express 14, 5715 (2006)

    Article  ADS  Google Scholar 

  28. S Roy, S K Bhadra, K Saitoh, M Koshiba and G P Agrawal, Opt. Express 19, 10443 (2011)

    Article  ADS  Google Scholar 

  29. S Kedenburg, T Gissibl, T Steinle, A Steinmann and H Giessen, Opt. Express 23, 8281 (2015)

    Article  ADS  Google Scholar 

  30. A B Fedotov, A N Naumov, A M Zheltikov, I Bugar, D Chorvat Jr, D Chorvat, A P Tarasevitch and D von der Linde, J. Opt. Soc. Am. B 19, 2156 (2002)

    Article  ADS  Google Scholar 

  31. D Jain, R Sidharthan, P M Moselund, S Yoo, D Ho and O Bang, Opt. Express 24, 26667 (2016)

    Article  ADS  Google Scholar 

  32. X Wang, D Wang, X Shen, Z Wu, X He, J Yuan, X Wang and C Yu, Optik 140, 423 (2017)

    Article  ADS  Google Scholar 

  33. M A Islam and M A Hossain, Opt. Laser Technol. 44, 2476 (2012)

    Article  ADS  Google Scholar 

  34. Q Xu, Y Zhao, M Wang, Y Zhang and B Hao, Proc. SPIE 10250, 102500E (2017)

    Google Scholar 

  35. J M Dudley, G Genty and S Coen, Rev. Mod. Phys. 78, 1135 (2006)

    Article  ADS  Google Scholar 

  36. A Gautam Prabhakar, B Akshit Peer, C Ajeet Kumar and D Vipul Rastogi, Proceedings of the IEEE Students Conference on Engineering and Systems (2012) p. 1

  37. F D Mahad, A S M Supa, D Forsyth, T Sun and A I Azmi, TELKOMNIKA 14, 880 (2016)

    Article  Google Scholar 

  38. Md F H Arif, K Ahmed, S Asaduzzaman and Md A K Azad, Photon. Sens. 6, 279 (2016)

    Article  ADS  Google Scholar 

  39. D C Tee, M H Abu Bakar, N Tamchek and F R Mahamd Adikan, IEEE Photon. J5, 7200607 (2013)

    Article  ADS  Google Scholar 

  40. S Roy and P R Chaudhuri, Opt. Commun. 282, 3448 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the participants who contributed to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aparna A Nair.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nair, A.A., Jayaraju, M. Design and study on square lattice-based photonic crystal fibre under different air holes for supercontinuum generation. Pramana - J Phys 91, 66 (2018). https://doi.org/10.1007/s12043-018-1642-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-018-1642-x

Keywords

PACS Nos

Navigation