Skip to main content
Log in

Numerical approach for stagnation point flow of Sutterby fluid impinging to Cattaneo–Christov heat flux model

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The present study examines the stagnation point flow of a non-Newtonian fluid along with the Cattaneo–Christov heat flux model. The coupled system is simplified using suitable similar solutions and solved numerically by incorporating the shooting method with the Runge–Kutta of order five. The motivation is to analyse the heat transfer using an amended form of Fourier law of heat conduction known as the Cattaneo–Christov heat flux model. The influences of significant parameters are taken into the account. The computed results of velocity and temperature profiles are displayed by means of graphs. The notable findings are as follows. The viscous and thermal boundary layer exhibits opposite trends for Reynolds number, Deborah number and power-law index. The shear stress at the wall displays reverse patterns for shear thinning and shear thickening fluids. The Prandtl number contributes to increasing the Nusselt number while the Deborah number of heat flux plays the role of reducing it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. J B J Fourier, Theorie analytique de la chaleur (Chez Firmin Didot, Paris, 1822)

    MATH  Google Scholar 

  2. C Cattaneo, Sulla conduzionedelcalore, in: Atti del Seminario Matematico e Fisico dell Universita di Modena e Reggio Emilia, Vol. 3, p. 83 (1948)

  3. C I Christov, Mech. Res. Commun. 36, 481 (2009)

    Article  Google Scholar 

  4. S Han, L Zheng, C Li and X Zhang, Appl. Math. Lett. 38, 87 (2014)

    Article  MathSciNet  Google Scholar 

  5. M Mustafa, AIP Adv. 5, 047109 (2015)

    Article  ADS  Google Scholar 

  6. E Azhar, Z Iqbal, E N Maraj and B Ahmad, Front. Heat Mass Transf. 8, 22 (2017)

  7. B Ahmad and Z Iqbal, Front. Heat Mass Transf. 8, 25 (2017)

    MathSciNet  Google Scholar 

  8. J L Sutterby, AIChE J. 12, 63 (1966)

    Article  Google Scholar 

  9. R L Batra and M Eissa, Polym. Plast. Technol. Eng. 33, 489 (1994)

    Article  Google Scholar 

  10. B C Sakiadis, AIChE J. 7, 26 (1961)

    Article  Google Scholar 

  11. R Cortell, Int. J. Non Linear Mech. 29, 155 (1994)

    Article  ADS  Google Scholar 

  12. A Chakrabarti and A S Gupta, Q. Appl. Math. 37, 73 (1979)

    Article  Google Scholar 

  13. H I Andersson, K H Bech and B S Dandapat, Int. J. Non Linear Mech. 27, 929 (1992)

    Article  Google Scholar 

  14. T C Chiam, J. Phys. Soc. Jpn. 63, 2443 (1994)

    Article  ADS  Google Scholar 

  15. A Ishak, R Nazar and I Pop, Chem. Eng. J. 148, 63 (2009)

    Article  Google Scholar 

  16. T R Mahpatra and A S Gupta, Heat Mass Transf. 28, 517 (2002)

    Article  ADS  Google Scholar 

  17. J I Oahimirea and B I Olajuwonb, Int. J. Appl. Sci. Eng. 11, 331 (2013)

    Google Scholar 

  18. P Weidman, Int. J. Non-Linear Mech. 82, 1 (2016)

    Article  ADS  Google Scholar 

  19. K Vajravelu, K V Prasad and H Vaidya, Commun. Numer. Anal. 2016, 17 (2016)

    Article  Google Scholar 

  20. D Pal, G Mandal and K Vajravalu, Commun. Numer. Anal. 2015, 30 (2015)

    Article  Google Scholar 

  21. Z Iqbal, E N Maraj, E Azhar and Z Mehmood, J. Taiwan Inst. Chem. Eng. 81, 150 (2017)

    Article  Google Scholar 

  22. Z Iqbal, E Azhar and E N Maraj, Phys. E: Low-Dimen. Syst. Nanostruct. 91, 128 (2017)

    Article  ADS  Google Scholar 

  23. Z Iqbal, E N Maraj, E Azhar and Z Mehmood, Adv. Powder Technol. 28, 2332 (2017)

    Article  Google Scholar 

  24. E N Maraj, Z Iqbal, Z Mehmood and E Azhar, Eur. Phys. J. Plus 132, 476 (2017)

    Article  Google Scholar 

  25. Z Iqbal, Z Mehmood, E Azhar and E N Maraj, J. Mol. Liq. 234, 296 (2017)

    Article  Google Scholar 

  26. Z Iqbal, N S Akbar, E Azhar and E N Maraj, Alex. Eng. J., https://doi.org/10.1016/j.aej.2017.03.047 (2017)

  27. Z Iqbal, N S Akbar, E Azhar and E N Maraj,  Eur. Phys. J. Plus 132, 143 (2017)

  28. E Azhar, Z Iqbal and E N Maraj, Z. Naturf. A 71, 837 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehtsham Azhar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azhar, E., Iqbal, Z., Ijaz, S. et al. Numerical approach for stagnation point flow of Sutterby fluid impinging to Cattaneo–Christov heat flux model. Pramana - J Phys 91, 61 (2018). https://doi.org/10.1007/s12043-018-1640-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-018-1640-z

Keywords

PACS Nos

Navigation