Skip to main content
Log in

The effect of static external magnetic field on the nonlinear absorption of the S-polarised short laser pulse in collisional underdense plasma

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Inverse Bremsstrahlung absorption is a mechanism for generating heat in the inertial confinement fusion (ICF) process. To maximise the heat produced, it is desirable to investigate the possibilities for increasing the absorption rate through the inverse Bremsstrahlung process. It should be noted that some absorption mechanisms found for nanosecond long laser pulses also appear for ultrashort laser pulses. In this paper, the physics of absorption for S-polarised laser pulse and magnetised underdense plasma interaction in the presence of electrons ohmic heating and ponderomotive nonlinearities is analysed for both collisional isothermal and collisional non-isothermal magnetised plasmas. Here, we show that, in the presence of a static magnetic field, the absorption rate of the S-polarised laser pulse through interaction with underdense plasma can be increased intensively. In other words, by applying an external magnetic field, the laser pulse radiation will penetrate a region of greater plasma density compared to the case of non-magnetised plasma for the S-polarised absorption. It is remarkable that due to the heat of the plasma at the expanse of the wave energy in the case of the non-thermal, magnetised and collisional plasma, the absorption coefficient is increased intensively in comparison with the collisional plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H Hora, Physics of laser driven plasmas (Wiley, New York, 1981)

    Google Scholar 

  2. S Jafari, M Nilkar, A Ghasemizad and H Mehdian, Phys. Plasmas  21, 104503 (2014)

    Article  ADS  Google Scholar 

  3. S Jafari, Laser Phys. Lett.  12, 075002 (2015)

    Article  ADS  Google Scholar 

  4. K Hajizadeh, M Ettehadi Abari, Y Ahmadizadeh and B Shokri, Phys. Scr.  85, 055501 (2012)

    Article  ADS  Google Scholar 

  5. M Malekshahi and D Dorranian, Opt. Laser Technol.  48, 549 (2013)

    Article  ADS  Google Scholar 

  6. H Hora, Phys. Fluids  28, 3705 (1985)

    Article  ADS  Google Scholar 

  7. S Hai-Bo, D Shi-Qiang and X Bai-Song, Commun. Theor. Phys.  59, 205 (2013)

    Article  ADS  Google Scholar 

  8. L Ming-Ping, L Bing-Bing, L San-Qiu, Z FuYang and L Jie, Commun. Theor. Phys.  60, 222 (2013)

    Article  ADS  Google Scholar 

  9. M Ettehadi Abari and B Shokri, Phys. Plasmas  19, 113107 (2012)

    Article  ADS  Google Scholar 

  10. H Hora and G H Miley, J. Energy Power Eng.  5, 718 (2011)

    Google Scholar 

  11. R Sadighi-Bonabi, H Hora, Z Riazi, E Yazdani and S K Sadighi, Laser Part. Beams  28, 101 (2010)

    Article  ADS  Google Scholar 

  12. M Malekshahi, D Dorranian and H R Askari, Opt. Commun.  332, 222 (2014)

    Article  ADS  Google Scholar 

  13. D N Gupta and C-M Ryu, Phys. Plasmas  12, 053103 (2005)

    Article  ADS  Google Scholar 

  14. P Kaw and J Dawson, Phys. Fluids  12, 2586 (1969)

    Article  ADS  Google Scholar 

  15. H B Zhuo, Z L Chen, W Yu, Z M Sheng, M Y Yu, Z Jin and R Kodama, Phys. Rev. Lett.  105, 065003 (2010)

    Article  ADS  Google Scholar 

  16. Z Y Ge, Y Yin, S X Li, M Y Yu, T P Yu, H Xu, H B Zhuo, Y Y Ma, F Q Shao and C L Tian, New J. Phys.  14, 103015 (2012)

    Article  ADS  Google Scholar 

  17. C Rozina, N L Tsintsadze, M Jamil, A Rasheed and S Ali, Astrophys. Space Sci.  353, 485 (2014)

    Article  ADS  Google Scholar 

  18. Y T Li, J Zhang, Z M Sheng, J Zheng, Z L Chen, R Kodama, T Matsuoka, M Tanaka, T Tsutsumi and T Yabuuchi, Phys. Rev. E  69, 036405 (2004)

    Article  ADS  Google Scholar 

  19. L M Chen, F Liu, W M Wang, M Kando, J Y Mao, L Zhang, J L Ma, Y T Li, S V Bulanov, T Tajima, Y Kato, Z M Sheng, Z Y Wei and J Zhang, Phys. Rev. Lett.  104, 215004 (2010)

    Article  ADS  Google Scholar 

  20. S Belghit and A Sid, Pramana – J. Phys.  87, 96 (2016)

    Article  ADS  Google Scholar 

  21. A Sid, Phys. Plasmas  1, 214 (2003)

    Article  ADS  Google Scholar 

  22. J P Matte, M Lamoureux, C Moller, R Y Yin, J Delletrez, J Virmont and T W Johnston, Plasma Phys. Control. Fusion  30, 1665 (1988)

    Article  ADS  Google Scholar 

  23. Z Y Ge, H B Zhuo, W Yu, X H Yang, T P Yu, X H Li, D B Zou, Y Y Ma, Y Yin, F Q Shao and X J Peng, Phys. Rev. E  89, 033106 (2014)

    Article  ADS  Google Scholar 

  24. M Mahmoodi-Darian, M Ettehadi-Abari and M Sedaghat, J. Theor. Appl. Phys.  10, 33 (2016)

    Article  ADS  Google Scholar 

  25. M Ettehadi-Abari, M Sedaghat, B Shokri and M Ghorbanalilu, Plasma Phys. Control. Fusion  57, 085001 (2015)

    Article  ADS  Google Scholar 

  26. M Sedaghat, M Ettehadi-Abari, B Shokri and M Ghorbanalilu, Phys. Plasmas  22, 033114 (2015)

    Article  ADS  Google Scholar 

  27. M Ettehadi-Abari, M Sedaghat and B Shokri, Plasma Phys. Control. Fusion  22, 103112 (2015)

    Article  Google Scholar 

  28. D Bauer and P Mulser, Phys. Plasmas  14, 023301 (2007)

    Article  ADS  Google Scholar 

  29. N Panahi, M Ettehadi-Abari and M T Hosseinnejad, Phys. Plasmas  24, 033121 (2017)

    Article  ADS  Google Scholar 

  30. H B Cai, W Yu, S P Zhu, C Y Zheng and L H Coa, Phys. Plasmas  13, 094504 (2006)

    Article  ADS  Google Scholar 

  31. S Eliezer, The interaction of high power lasers with plasmas (IOP, Bristol, 2002) Vol. 409, Chapter III

  32. S Liu and V K Tripathi, Interaction of electromagnetic waves with electron beams and plasmas (World Scientific, Singapore, 1994) Chapter VI

  33. M H Key, Nature  412, 775 (2001)

    Article  ADS  Google Scholar 

  34. R Kodama, H Shiraga, K Shigemori, Y Toyama, S Fujioka, H Azechi, H Fujita, H Habara, T Hall, Y Izawa, T Jitsuno, Y Kitagawa, K M Krushelnick, K L Lancaster, K Mima, K Nagai, M Nakai, H Nishimura, T Norimatsu, P A Norreys, S Sakabe, K A Tanaka, A Youssef, M Zepf and T Yamanaka, Nature  418, 933 (2002)

    Article  ADS  Google Scholar 

  35. P Mulser and D Bauer, High power laser–matter interaction (Springer, Berlin, 2010) Vol. 238

  36. A Kumar, Phys. Plasmas  19, 063101 (2012)

    Article  ADS  Google Scholar 

  37. C D Decker, W B Mori, J M Dawson and T Katsouleas, Phys. Plasmas  1, 4043 (1994)

    Article  ADS  Google Scholar 

  38. A Paknezhad, Phys. Plasmas  20, 012110 (2013)

    Article  ADS  Google Scholar 

  39. A Grinenko and D O Gericke, Phys. Rev. Lett.  103, 065005 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Ettehadi-Abari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ettehadi-Abari, M., Hosseinnejad, MT. The effect of static external magnetic field on the nonlinear absorption of the S-polarised short laser pulse in collisional underdense plasma. Pramana - J Phys 91, 79 (2018). https://doi.org/10.1007/s12043-018-1639-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-018-1639-5

Keywords

PACS Nos

Navigation