Skip to main content
Log in

Performance improvement of organic light emitting diode using 4,4\(^{\prime }\)-N,N\(^{\prime }\)-dicarbazole-biphenyl (CBP) layer over fluorine-doped tin oxide (FTO) surface with doped light emitting region

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this study, high performance of organic light emitting diodes (OLEDs) with a buffer layer of dicarbazole-biphenyl (CBP) film is demonstrated. With an optimal thickness of CBP (12 nm), the luminance efficiency of OLED is found to increase compared to the single-layer anode OLED. To study the performance of OLED using the buffer layer, we deposited CBP films of different thicknesses on the fluorine-doped tin oxide (FTO) surface and observed their JV and LV characteristics. Further analysis was carried out by making the host–guest combination within the light emitting region using iridium (III) complexes \((\hbox {Ir}(\hbox {ppy})_{3})\) as the dopant material to enhance the efficiency of the device. We also measure the sheet resistance, optical transmittance and surface morphology of both the single and bilayer electrode surfaces using the FE-SEM images. Here the maximum value of current efficiency is found to be 12.45 cd / A under optimised doped and quantum tunnelling conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. I D Parker, J. Appl. Phys. 75, 1656 (1994)

    Article  ADS  Google Scholar 

  2. H M Lee, K H Choi, D H Hwang, L M Do, T Zyung, J W Lee and J K Park, Appl. Phys. Lett. 72, 2382 (1998)

    Article  ADS  Google Scholar 

  3. L Zhou, J Y Zhuang, S Tongay, W M Su and Z Cui, J. Appl. Phys. 114, 074506 (2013)

    Article  ADS  Google Scholar 

  4. H Mu, W Li, R Jones, A Steckl and D Klotzkin, J. Lumin. 126, 225 (2007)

    Article  Google Scholar 

  5. H Meng, Y Dai, Y Ye, J X Luo, Z J Shi, L Dai and G G Qin, J. Phys. D: Appl. Phys. 45, 245103 (2012)

    Article  ADS  Google Scholar 

  6. Daeil Kim, Trans. Electr. Electron. Mater. 14, 242 (2013)

    Article  Google Scholar 

  7. Chien-Jung Huang, Kan-Lin Chen, Po-Wen Sze, Wen-Ray Chen, Teen-Hang Meen and Shi-Lun Wu, Int. J. Photoenergy 4, 437304 (2013)

  8. W P Hu, K Manabe, T Furukawa and M Matsumuda, Appl. Phys. Lett. 80, 2640 (2002)

    Article  ADS  Google Scholar 

  9. D Kabra, L P Lu, M H Song, H J Snaith and R H Friend, Adv. Mater. 22, 3194 (2010)

    Article  Google Scholar 

  10. M Vasilopoulou, L C Palilis, D G Georgiadou, S Kennou, I Kostis, D Davazoglou and P Argitis, Appl. Phys. Lett. 100, 013311 (2012)

    Article  ADS  Google Scholar 

  11. I Hong, M W Lee, Y M Koo, H Jeong, T S Kim and O K Song, Appl. Phys. Lett. 87, 063502 (2005)

    Article  ADS  Google Scholar 

  12. T Y Kim, M Suh, S J Kwon, T H Lee, J E Kim, Y J Lee, J H Kim, M P Hong and K S Suh, Macromol. Rapid Commu. 30, 1477 (2009)

    Article  Google Scholar 

  13. T Mori, H Fujikawa, S Tokito and Y Taga, Appl. Phys. Lett. 73, 2763 (1998)

    Article  ADS  Google Scholar 

  14. S T Zhang, Y C Zhou, J M Zhou, Y Q Zhan and Z J Wang, Appl. Phys. Lett. 89, 043502 (2006)

    Article  ADS  Google Scholar 

  15. E L Bruner, N Koch, A R Span, S L Bernasek, A Kahn and J Schwartz, J. Amer. Chem. Soc. 13, 124 (2002)

    Google Scholar 

  16. X L Zhou, J X Sun, H J Peng, Z G Mang and M Wong, Appl. Phys. Lett. 15, 87 (2005)

    Article  Google Scholar 

  17. S T Zhang, X M Ding, J M Zhao, H Z Shi, J He, Z H Xiong, H J Ding, E G Obbard, Y Q Zhan, W Huang and X Y Hou, Appl. Phys. Lett. 84, 425 (2004)

    Article  ADS  Google Scholar 

  18. H T Lu and M Yokoyama, Solid State Electron. 47, 1409 (2003)

    Article  ADS  Google Scholar 

  19. B Delgertsetseg, N Javkhlantugs, E Enkhtur, Y Yokokura, T Ooba, K Ueda, C Ganzorig and M Sakomura, Rev. Téc. Ing. Univ. 37, 35 (2014)

    Google Scholar 

  20. M Vasilopoulou, G Papadimitropoulos, L C Palilis, D G Georgiadou, P Argitis, S Kennou, I Kostis, N Vourdas, N A Stathopoulos and D Davazoglou, Org. Electron. 13, 796 (2012)

    Article  Google Scholar 

  21. J Li, M Yahiro, K Ishida, H Yamada and K Matsushige, Syn. Met. 151, 141 (2005)

    Article  Google Scholar 

  22. E F Gomez and A J Steckl, ACS Photon. 2, 439 (2015)

    Article  Google Scholar 

  23. A Uniyal and P Mittal, J. Graphic Era Uni. 4, 32 (2016)

    Google Scholar 

  24. Yu-Long Wang, Jia-Ju Xu, Yi-Wei Lin, Qian Chen and Hai-Quan Shan, AIP Adv. 5, 107205 (2015)

  25. Y Xu et al, Nanoscale Res. Lett. 12, 254 (2017)

    Article  ADS  Google Scholar 

  26. M Shan, H Jiang, Y Guan, D Sun, Y Wang, J Hua and J Wan, RSC Adv. 7, 13584 (2017)

    Article  Google Scholar 

  27. Vineeth Michael, Fabrication of OLED on FTO and ITO coated substrates, Ph.D. thesis 1, P11287888 (2012)

  28. A R Schlatmann, D W Floet, A Hilberer, F Garten, P J M Smulders and T M Klapwijk, Appl. Phys. Lett. 69, 1764 (1996)

    Article  ADS  Google Scholar 

  29. A Andersson, N Johansson, P Broms, N Y D Lupo and W R Salaneck, Adv. Mater. 11, 859 (1998)

    Article  Google Scholar 

  30. A K Havare, M Can, S Demic, S Okur, M Kus, H Aydın, N Yagmurcukardes and S Ta, Synth. Met. 161, 2397 (2011)

    Article  Google Scholar 

  31. R V Adriano, P M Benvenho Jose, Serbena Rudolf Lessmann and Ivo A Hummelgen, Braz. J. Phys. 35, 1069 (2005)

    Google Scholar 

  32. F Zhang, Z Xu, S Zhao, D Zhao, G Yuan and Z Cheng, Appl. Surf. Sci. 255, 1942 (2008)

    Article  ADS  Google Scholar 

  33. T Borthakur and R Sarma, Appl. Phys. A 123, 207 (2017)

    Article  ADS  Google Scholar 

  34. J S Park, W S Jeon, J H Yu, R Pode and J H Kwon, Thin Solid Films 519(10), 3259 (2011)

    Article  ADS  Google Scholar 

  35. W S Jeon, T J Park, S Y Kim, R Pode, J Jang and J H Kwon, Org. Electron. 10(2), 240 (2009)

    Article  Google Scholar 

  36. R C Kwong et al, Appl. Phys. Lett. 81(1), 162 (2002)

    Article  ADS  Google Scholar 

  37. K Yoshino, Y Shimoda, Y Kawagishi, K Nakayama and M Ozaki, Appl. Phys. Lett. 75, 932 (1999)

    Article  ADS  Google Scholar 

  38. M M da Silva, A R Vaz, S A Moshkalev and J W Swart, ECS Trans. 9, 235 (2007)

    Article  Google Scholar 

  39. Z B Deng, X M Ding, L S Liao, X Y Hou and S T Lee, Display 21, 323 (2000)

    Article  Google Scholar 

  40. Z B Deng, X M Ding and S T Lee, Appl. Phys. Lett. 74, 2227 (1999)

    Article  ADS  Google Scholar 

  41. J S Park, W S Jeon, J H Yu, R Pode and J H Kwon, Thin Solid Films 519(10), 3259 (2011)

    Article  ADS  Google Scholar 

  42. W S Jeon, T J Park, S Y Kim, R Pode, J Jang and J H Kwon, Organic Electronics 10(2), 240 (2009)

    Article  Google Scholar 

  43. B D Chin, M C Suh, M H Kim, S T Lee, H D Kim and H K Chung, Appl. Phys. Lett. 86, 133505 (2005)

    Article  ADS  Google Scholar 

  44. Y Kawamura, S Yanagida and S R Forrest, J. Appl. Phys. 92, 87 (2007)

    Article  ADS  Google Scholar 

  45. A Tsuboyama et al, J. Am. Chem. Soc. 125(42), 12971 (2003)

    Article  Google Scholar 

  46. D Saikia and R Sarma, Pramana – J. Phys. 88: 83 (2017).

    Article  ADS  Google Scholar 

  47. H H Kim, E H Westerwick, Y O Kim, M D Morris, M Cerullo, T M Miller and E W Kwock, J. Light. Technol. 12, 2107 (1994)

    Article  ADS  Google Scholar 

  48. S T Zhang, X M Ding, J M Zhao, H Z Shi, J He, Z H Xiong and H J Ding, Appl. Phys. Lett. 84, 3 (2004)

    Google Scholar 

  49. X Zhou, J He, L S Liao, M Lu, Z H Xiong, X M Ding and X Y Hou, Appl. Phys. Lett. 74, 4 (1999)

    Article  Google Scholar 

  50. S H Jeong, S B Lee and J H Boo, Curr. Appl. Phys. 4, 655 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhrubajyoti Saikia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saikia, D., Sarma, R. Performance improvement of organic light emitting diode using 4,4\(^{\prime }\)-N,N\(^{\prime }\)-dicarbazole-biphenyl (CBP) layer over fluorine-doped tin oxide (FTO) surface with doped light emitting region. Pramana - J Phys 91, 65 (2018). https://doi.org/10.1007/s12043-018-1637-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-018-1637-7

Keywords

PACS Nos

Navigation