Skip to main content
Log in

Impact of autocatalysis chemical reaction on nonlinear radiative heat transfer of unsteady three-dimensional Eyring–Powell magneto-nanofluid flow

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The pursuit of superior working liquids for heat / mass transfer mechanisms in engineering is on the rise, not only to maximise revenue but also to accommodate heat dissipation or chemical separation under extreme conditions. The addition of a small amount of nanoparticle, i.e. a product called nanofluid, has been initiated over the last decade. In this paper, we present a comprehensive study of unsteady three-dimensional (3D) flow of the Eyring–Powell nanofluid under convective and nanoparticles mass flux conditions. The effects of constructive / destructive chemical reactions and nonlinear thermal radiation are also considered in the Eyring–Powell nanofluid model. Additionally, suitable transformations are utilised to obtain coupled ordinary differential equations (ODEs) from the system of partial differential equations (PDEs) and the numerical solution of the system of the coupled ODEs is obtained by means of the bvp4c scheme. The obtained numerical data are plotted for the temperature and concentration profiles of nanofluids for various and converging values of physical parameters. Our findings demonstrate that the temperature of the Eyring–Powell nanofluid fall-off by changing the heat sink parameter. Furthermore, it is perceived from the sketches that the concentration of Eyring–Powell magneto-nanofluid decays at higher values of chemical reaction parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S U S Choi, ASME Int. Mech. Eng. 66, 99 (1995)

    Google Scholar 

  2. H F Oztop and E Abu-Nada, Int. J. Heat Fluid Flow 29, 1326 (2008)

    Article  Google Scholar 

  3. O D Makinde and A Aziz, Int. J. Therm. Sci. 50, 1326 (2011)

    Article  Google Scholar 

  4. D Pal and H Mondal, Commun. Nonlinear Sci. Numer. Simul. 16, 1942 (2011)

    Article  ADS  Google Scholar 

  5. D Pal and H Mondal, Int. Commun. Heat Mass Transf. 38, 463 (2011)

    Article  Google Scholar 

  6. M Turkyilmazoglu, Chem. Eng. Sci. 84, 182 (2012)

    Article  Google Scholar 

  7. W A Khan, M Khan and R Malik, PLoS ONE 9(8), e10510 (2014)

    Google Scholar 

  8. M Khan, R Malik, A Munir and W A Khan, PLoS ONE 10(5), e0125683 (2015)

    Article  Google Scholar 

  9. A V Kuznetsou and D A Nield, Int. J. Therm. Sci. 77, 126 (2014)

    Article  Google Scholar 

  10. T Hayat, M Waqas, S A Shehzad and A Alsaedi, Int. J. Numer. Methods Heat Fluid Flow 26, 214 (2014)

    Article  Google Scholar 

  11. T Hayat, M Imtiaz and A Alsaedi, J. Mol. Liq. 212, 203 (2015)

    Article  Google Scholar 

  12. T Hayat, M Imtiaz and A Alsaedi, J. Magn. Magn. Mater. 395, 294 (2015)

    Article  ADS  Google Scholar 

  13. M Khan and W A Khan, AIP Adv. 5, 107138 (2015)

    Article  ADS  Google Scholar 

  14. M Khan and W A Khan, AIP Adv. 6, 025211 (2016)

    Article  ADS  Google Scholar 

  15. N C Peddisetty, Pramana – J. Phys. 87, 62 (2016)

    Article  ADS  Google Scholar 

  16. M Khan and W A Khan, J. Braz. Soc. Mech. Sci. Eng. 38, 2359 (2016)

    Article  Google Scholar 

  17. N A Sheikh, F Ali, I Khan, M Gohar and M Saqib, Eur. Phys. J. Plus 132, 540 (2017)

    Article  Google Scholar 

  18. M Khan, M Iran and W A Khan, Int. J. Hydrogen Energy 42, 22054 (2017)

    Article  Google Scholar 

  19. G Pizza, J Mantzaras and C E Frouzakis, Catal. Today 155, 123 (2010)

    Article  Google Scholar 

  20. T Hayat, M Waqas, M I Khan and A Alsaedi, J. Mol. Liq. 225, 302 (2017)

    Article  Google Scholar 

  21. T Hayat, M I Khan, M Waqas and A Alsaedi, Colloids Surf. A 518, 263 (2017)

    Article  Google Scholar 

  22. M I Khan, T Hayat, M Waqas and A Alsaedi, J. Mol. Liq. 230, 143 (2017)

    Article  Google Scholar 

  23. Y Wang, Z Zhou and W Yang, Energy Convers. Manage. 51(6), 1127 (2010)

    Article  Google Scholar 

  24. Y H Li, G B Chen and F H Wu, Combust. Flame 159(4), 1644 (2012)

    Article  Google Scholar 

  25. T Yasmeen, T Hayat, M I Khan, M Imtiaz and A Alsaedi, J. Mol. Liq. 223, 1000 (2016)

    Article  Google Scholar 

  26. W A Khan, A S Alshomrani and M Khan, Results Phys. 6, 772 (2016)

    Article  ADS  Google Scholar 

  27. A Khalid, I Khan, A Khan and S Shafie, AIP Adv. 5, 127125 (2015)

    Article  ADS  Google Scholar 

  28. W A Khan and M Khan, Results Phys. 6, 829 (2016)

    Article  ADS  Google Scholar 

  29. T Hayat, M Waqas, S A Shehzad and A Alsaedi, Pramana – J. Phys. 86, 3 (2016)

    Article  ADS  Google Scholar 

  30. N A Sheikh, F Ali, M Saqib, I Khan, S A A Jan, A S Alshomrani and M S Alghamdi, Results Phys. 7, 789 (2017)

    Article  ADS  Google Scholar 

  31. M Khan, W A Khan and A S Alshomrani, Int. J. Heat Mass Transf. 101, 570 (2016)

    Article  Google Scholar 

  32. F Ali, N A Sheikh, I Khan and M Saqib, J. Magn. Magn. Mater. 423, 327 (2017)

    Article  ADS  Google Scholar 

  33. M Irfan, W A Khan and M Khan, Results Phys. 7, 3315 (2017)

    Article  ADS  Google Scholar 

  34. M Irfan, M Khan and W A Khan, Eur. Phys. J. Plus 132, 517 (2017)

    Article  Google Scholar 

  35. F Ali, M Saqib, I Khan, N A Sheikh and S A A Jan, Eur. Phys. J. Plus 132, 95 (2017)

    Article  Google Scholar 

  36. F Ali, N A Sheikh, I Khan and M Saqib, Arab. J. Sci. Eng. 42, 2565 (2017)

    Article  MathSciNet  Google Scholar 

  37. L Ahmed, M Khan and W A Khan, Eur. Phys. J. Plus 132, 373 (2017)

    Article  Google Scholar 

  38. A Khan, I Khan, A Khalid and S Shafie, Results Phys. 7, 3301 (2017)

    Article  ADS  Google Scholar 

  39. T Hayat, Z Abbas, M Qasim and S Obaidat, Int. J. Heat Mass Transf. 8, 1817 (2012)

    Article  Google Scholar 

  40. B J Gireesha, R S R Gorla and B Mahanthesh, J. Nanofluids 4, 474 (2015)

    Article  Google Scholar 

  41. M Khan, M Irfan, W A Khan and L Ahmad, Results Phys. 7, 1899 (2017)

    Article  ADS  Google Scholar 

  42. M Khan, M Irfan and W A Khan, Int. J. Mech. Sci. 130, 375 (2017)

    Article  Google Scholar 

  43. F Ali, N A Sheikh, M Saqib and A Khan, Nonlinear Sci. Lett. A 8(1), 101 (2017)

    Google Scholar 

  44. M M Bhatti, A Zeeshan and R Ellahi, Pramana – J. Phys. 89: 48 (2017)

    Article  ADS  Google Scholar 

  45. M Khan, L Ahmad and W A Khan, J. Braz. Soc. Mech. Sci. Eng. 39, 4475 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under Grant No. RG-8-130-38. The authors, therefore, acknowledge with thanks the DSR technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W A Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, W.A., Alshomrani, A.S., Alzahrani, A.K. et al. Impact of autocatalysis chemical reaction on nonlinear radiative heat transfer of unsteady three-dimensional Eyring–Powell magneto-nanofluid flow. Pramana - J Phys 91, 63 (2018). https://doi.org/10.1007/s12043-018-1634-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-018-1634-x

Keywords

PACS Nos

Navigation