Skip to main content
Log in

Transient entropy analysis of the magnetohydrodynamics flow of a Jeffrey fluid past an isothermal vertical flat plate

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This study presents the analysis of entropy generation concept for unsteady magnetohydrodynamics Jeffrey fluid flow over a semi-infinite vertical flat plate. This physical problem is constituted by transient coupled highly nonlinear equations and is evaluated numerically by using an implicit scheme. The average values of wall shear stress and Nusselt number, entropy generation number and Jeffrey fluid-flow variables are analysed for distinct values of physical parameters at both transient and steady states. The results show that the time needed for achieving a steady state pertaining to the temperature and velocity gets augmented with the increased values of Jeffrey fluid parameter. The results also specify that the entropy generation number increases with the increasing values of Jeffrey fluid parameter, group parameter and Grashof number while the opposite trend is seen for the magnetic parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A Acrivos, A1ChE J.  4, 584 (1960)

    Google Scholar 

  2. H T Chen and C H Chen, J. Heat Trans.  110, 257 (1988)

    Article  Google Scholar 

  3. A J Chamkha, A M Aly and M A Mansour, Nonlinear Anal. Model. Contr.  15, 139 (2010)

    Google Scholar 

  4. V R Prasad, S A Gaffar, K E Reddy, O A Bég and S Krishnaiah, Heat Trans. Asian Res.  44, 189 (2013)

    Article  Google Scholar 

  5. A Pantokratoras, Adv. Mech. Eng.  8, 1 (2016)

    Google Scholar 

  6. T Hayat, M Iqbal, H Yasmin, F E Alsaadi and H Gao, Pramana – J. Phys.  85, 125 (2015)

    Google Scholar 

  7. I Pop and M Sheremet, Int. J. Numer. Methods Heat Fluid Flow  27, 2318 (2017)

    Article  Google Scholar 

  8. A A Ahmed and A El-A Mohamed, Pramana – J. Phys. 88: 31 (2017)

    Article  ADS  Google Scholar 

  9. S Siddiqa, N Begum, Md H Anwar and R S Reddy Gorla, Int. J. Heat Mass Transf.  113, 482 (2017)

    Article  Google Scholar 

  10. T Hayat, I Zahid, M Meraj and A Ahmed, Thermal Sci.  18, 1069 (2014)

    Article  Google Scholar 

  11. M Turkyilmazoglu and I Pop, Int. J. Heat Mass Transf.  57, 82 (2013)

    Article  Google Scholar 

  12. T Hayat, A Sadia, M Qasim and A H Awatif, Int. J. Numer. Meth. Fluids 69, 1350 (2011)

    Article  Google Scholar 

  13. P V Satya Narayana and D Harish Babu, J. Taiwan Inst. Chem. Eng.  59, 18 (2016)

    Article  Google Scholar 

  14. A M Abd-Alla and S M Abo-Dahab, J. Magn. Magn. Mater.  374, 680 (2015)

    Article  ADS  Google Scholar 

  15. N S Akbar, S Nadeem and A Mohamed J. Mech. Med. Biol. 11, 529 (2011)

    Article  Google Scholar 

  16. L Fengqin, J Yongjun, X Zhiyong, L Yongbo and L Quansheng, R. Soc. Chem.  7, 782 (2017)

    Google Scholar 

  17. T Hayat, Z Iqbal, M Mustafa and A Alsaedi, Thermal Sci.  18, 1069 (2014)

    Article  Google Scholar 

  18. T Hayat, T Muhammad, S A Shehzad and A Alsaedi, Z. Naturf. A  70, 225 (2015)

    Article  ADS  Google Scholar 

  19. I J Uwanta, S K Ahmad and E Omokhuale, J. Math. Comput. Sci.  4, 915 (2014)

    Google Scholar 

  20. G Herdrich, M Auweter-Kurtz, M Fertig, A Nawaz and D Petkow, Vacuum  80, 1167 (2006)

    Article  ADS  Google Scholar 

  21. M M Rashidi, M Keimanesh, O A Beg and T K Hung, Int. J. Numer. Meth. Biomed. Eng.  27, 805 (2011)

    Article  Google Scholar 

  22. D O Gomez and P D Mininni, Nonlinear Proc. Geophys.  11, 619 (2004)

    Article  ADS  Google Scholar 

  23. A Tsinober, Am. Inst. Aeronaut. Astrophys.  123, 327 (1990)

    Google Scholar 

  24. P Graneau, IEEE Trans. Mag.  25, 3275 (1989)

    Article  ADS  Google Scholar 

  25. T Hayat, M Javed and N Ali, Transp. Porous Med.  74, 259 (2008)

    Article  Google Scholar 

  26. S Abdul Gaffar, V Ramachandra Prasad and E Keshava Reddy, Ain Shams Eng. J.  8, 277 (2016)

    Article  Google Scholar 

  27. N S Akbar, Z H Khan and S Nadeem, J. Appl. Fluid Mech.  9, 565 (2016)

    Article  Google Scholar 

  28. R K Selvi and R Muthuraj, Ain Shams Eng. J. (2017) (in press)

  29. T Hayat, S Asad, M Mustafa and A Alsaedi, Comput. Fluids  108, 179 (2015)

    Article  MathSciNet  Google Scholar 

  30. T Hayat, M Rafiq and B Ahmad, J. Magn. Magn. Mater.  410, 89 (2016)

    Article  ADS  Google Scholar 

  31. D H Babu and S P V Narayana, J. Magn. Magn. Mater.  412, 185 (2016)

    Article  ADS  Google Scholar 

  32. K Das, N Acharya and P K Kundu, Alex. Eng. J.  54, 815 (2015)

    Article  Google Scholar 

  33. T Hayat, M Waqas, M I Khan and A Alsaedi, J. Mol. Liquids  225, 302 (2017)

    Article  Google Scholar 

  34. T Muhammad, T Hayat, A Alsaedi and A Qayyum, Chin. J. Phys.  55, 1511 (2017)

    Article  Google Scholar 

  35. W Leidenfrost, K Lee and B Korenic, Energy  5, 47 (1980)

    Article  Google Scholar 

  36. G Giangaspero and E Sciubba, Energy  58, 52 (2013)

    Article  Google Scholar 

  37. A Z Sahin, S M Zubair, A Z Al-Garni and R Kahraman, Energy Convers. Manag.  41, 1485 (2000)

    Article  Google Scholar 

  38. H Kockum and A Jernqvist, Inst. Chem. Eng. Trans.  76, 212 (1998)

    Article  Google Scholar 

  39. N Dalir, Alex. Eng. J.  53, 769 (2014)

    Article  Google Scholar 

  40. N Dalir, M Dehsara and S S Nourazar, Energy  79, 351 (2015)

    Article  Google Scholar 

  41. M A Sheremet, H F Oztop, I Pop and N Abu-Hamdeh, Entropy  8, 1 (2016)

    Google Scholar 

  42. N S Gibanov, M A Sheremet, H F Oztop and K Al-Salem, Numer. Heat Trans. A  72, 479 (2017)

    Article  Google Scholar 

  43. N S Gibanov, M A Sheremet, H F Oztop and K Al-Salem, J. Magn. Magn. Mater.  452, 193 (2018)

    Article  ADS  Google Scholar 

  44. G J Reddy, M Kumar, B Kethireddy and A J Chamkha, J. Mol. Liquids  252, 169 (2018)

    Article  Google Scholar 

  45. T Hayat, G Bashir, M Waqasa and A Alsaedi, Results Phys.  6, 817 (2016)

    Article  ADS  Google Scholar 

  46. H P Rani and G J Reddy, Am. J. Comput. Appl. Math.  2, 33 (2012)

    Article  Google Scholar 

  47. H P Rani, G J Reddy and C N Kim, Appl. Math. Mech. Engl. Ed.  34, 985 (2013)

    Article  Google Scholar 

  48. H S Takhar, P Ganesan, K Ekambavanan and V M Soundalgekar, Int. J. Numer. Meth. Heat Fluid Flow 7, 280 (1997)

    Article  Google Scholar 

  49. A S Butt, S Munawar, A Ali and A Mehmood, Z. Naturf.  A67, 451 (2012)

  50. M M Rashidi, S Bagheri, E Momoniat and N Freidoonimehr, Ain Shams Eng. J.  8, 77 (2017)

    Article  Google Scholar 

  51. A Bejan, Entropy generation minimisation (CRC Press, New York, 1996)

    MATH  Google Scholar 

Download references

Acknowledgements

Mahesh Kumar wishes to thank DST-INSPIRE (Code No. IF160028) for the grant of research fellowship and the Central University of Karnataka for providing research facilities. The authors are very much thankful to all reviewers for their valuable suggestions and comments for improving the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Janardhana Reddy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Reddy, G.J. & Dalir, N. Transient entropy analysis of the magnetohydrodynamics flow of a Jeffrey fluid past an isothermal vertical flat plate. Pramana - J Phys 91, 60 (2018). https://doi.org/10.1007/s12043-018-1628-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-018-1628-8

Keywords

PACS Nos

Navigation