Skip to main content
Log in

On quantum analogue of dynamical stabilisation of inverted harmonic oscillator by time periodical uniform field

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Quantum analogue of stabilised forced oscillations around an unstable equilibrium position is explored by solving the non-stationary Schrödinger equation (NSE) of the inverted harmonic oscillator (IHO) driven periodically by spatial uniform field of frequency \(\Omega \), amplitude \(F_{0}\) and phase \(\phi \), i.e. the system with the Hamiltonian of \(\hat{{H}}=(\hat{{p}}^{2}/2m)-(m\omega ^{2}x^{2}/2)-F_0 x\sin \) \(\left( {\Omega t+\phi } \right) \). The NSE has been solved both analytically and numerically by Maple 15 in dimensionless variables \(\xi = x\sqrt{m\omega /\hbar }\hbox {, }f_0 =F_0 /\omega \sqrt{\hbar m\omega }\) and \(\tau =\omega t\). The initial condition (IC) has been specified by the wave function (w.f.) of a generalised Gaussian type which suits well the corresponding quantum IC operator. The solution obtained demonstrates the non-monotonous behaviour of the coordinate spreading \(\sigma \left( \tau \right) \hbox { =}\sqrt{\big ( {\overline{\Delta \xi ^{2}\big ( \tau \big )} } \big )}\) which decreases first from quite macroscopic values of \(\sigma _{0} =2^{12,\ldots ,25}\) to minimal one of \(\sim \!(1/\sqrt{2})\) at times \(\tau <\tau _0 =0.125\ln \!\left( {16\sigma _0^4 +1} \right) \) and then grows back unlimitedly. For certain phases \(\phi \) depending on the \(\Omega /\omega \) ratio and \(n=\log _2\!\sigma _0 \), the mass centre of the packet \(\xi _{\mathrm {av}}( \tau )= \overline{\hat{{x}}(\tau )} \cdot \sqrt{m\omega /\hbar }\) delays approximately two natural ‘periods’ \(\sim \!(4\pi /\omega )\) in the area of the stationary point and then escapes to ‘\(+\)’ or ‘−’ infinity in a bifurcating way.  For ‘resonant’ \(\Omega =\omega \), the bifurcation phases \(\phi \) fit well with the regression formula of Fermi–Dirac type of argument n with their asymptotic \(\phi ( {\Omega ,n\rightarrow \infty } )\) obeying the classical formula \(\phi _{\mathrm {cl}} ( \Omega )=-\hbox {arctg} \, \Omega \) for initial energy \(E = 0\) in the wide range of \(\Omega =2^{-4},...,2^{7}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. I Serban and F K Wilhelm, Phys. Rev. Lett. 10, 101 (2007)

    Google Scholar 

  2. S Baskoutas, A Jannussistl and R Mignanig, J. Phys. A: Math. Gen. 27, 2189 (1994)

    Article  ADS  Google Scholar 

  3. Sh Matsumoto and M Yoshimura, Phys. Rev. A 59(6), 2201 (2000)

    Google Scholar 

  4. Y Nogami and F M Toyama, Phys. Rev. E 49(5), 4497 (1994)

    Article  ADS  Google Scholar 

  5. N F Stepanov and V I Pupyshev, Kvantovaya mekhanika molekul i kvantovaya khimiya: Ucheb. Posob. (Izd-vo MGU, Moscow, 1991) Chapter III, §2, p. 163 (in Russian), Quantum mechanics of molecules and quantum chemistry: Textbook (MSU Publishers, Moscow, 1991)

  6. B N Zakhar’ev, Sov. J. Part. Nucl. 23(5), 1387 (1992)

    MathSciNet  Google Scholar 

  7. C A Muñoz, J Rueda-Paz and K B Wolf, J. Phys. A: Math. Theor. 42, 485210 (2009)

    Article  Google Scholar 

  8. G Barton, Ann. Phys. 166(2), 322 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  9. C Yuce, A Kilic and A Coruh, Phys. Scr. 74(1), 114 (2007)

    Article  ADS  Google Scholar 

  10. P Duclos, E Soccorsi, P Stoviček and M Vittot, Rev. Math. Phys. 6, 212 (2008)

    Google Scholar 

  11. T B Miladinović and V M Petrović, Pramana – J. Phys. 86(3), 565 (2016)

    Google Scholar 

  12. Yu V Bezvershenko, P I Holod and A Messina, Phys. Scr. 143, 172 (2011)

    Google Scholar 

  13. I A Zlotnik, Numerical methods for solving the generalized time-dependent Schrödinger equation in unbounded domains, Ph.D. dissertation (MEPhI – National Research Nuclear University Moscow Engineering Physics Institute, 2013)

  14. V G Bagrov, D M Gitman, E S Macedo and A Pereira, J. Phys. A: Math. Theor. 46(32), 325305 (2013)

    Article  Google Scholar 

  15. M Maamache and J R Choi, Chin. Phys. \(C\) 41(11), 113106 (2017)

Download references

Acknowledgements

This work was supported by the grant 16-08-00997 of Russian Foundation of Based Researches “Investigation of non-linear polynomial controlled mechanical systems by means of mathematical and computer modelling”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor V Chistyakov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chistyakov, V.V. On quantum analogue of dynamical stabilisation of inverted harmonic oscillator by time periodical uniform field. Pramana - J Phys 91, 57 (2018). https://doi.org/10.1007/s12043-018-1623-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-018-1623-0

Keywords

PACS No

Navigation