Skip to main content
Log in

Trivariate analysis of two qubit symmetric separable state

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

One of the main problems of quantum information theory is developing the separability criterion which is both necessary and sufficient in nature. Positive partial transposition test (PPT) is one such criterion which is both necessary and sufficient for \(2\times 2\) and \(2\times 3\) systems but not otherwise. We express this strong PPT criterion for a system of 2-qubit symmetric states in terms of the well-known Fano statistical tensor parameters and prove that a large set of separable symmetric states are characterised by real statistical tensor parameters only. The physical importance of these states are brought out by employing trivariate representation of density matrix wherein the components of \({\mathbf{J}}\), namely \(J_{x}\), \(J_{y}\), \(J_{z}\) are considered to be the three variates. We prove that this set of separable states is characterised by the vanishing average expectation value of \(J_{y}\) and its covariance with \(J_{x}\) and \(J_{z}\). This allows us to identify a symmetric separable state easily. We illustrate our criterion using 2-qubit system as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M B Plenio and S Virmani, Quantum Inf. Comput103, 1 (2007)

    Google Scholar 

  2. R Horodecki, P Horodecki, M Horodecki and K Horodecki, Rev. Mod. Phys81, 865 (2009)

    Article  ADS  Google Scholar 

  3. L Gurvits, Proceedings of the 55th Annual ACM Symposium on Theory of Computing (2003) Vol. 10

  4. M Lewenstein, B Kraus, I J Cirac and P Horodecki, Phys. Rev. A 62, 052310 (2000)

    Article  ADS  Google Scholar 

  5. H Haeffner, W Haensel, C F Roos, J Benhelm, D Chekalkar, M Chwalla, T Koerber, U D Rapol, M Riebe, P O Schmidt, C Becher, O Guehne, W Duer and R Blatt, Nature 438, 643 (2005)

    Article  ADS  Google Scholar 

  6. A Peres, Phys. Rev. Lett. 77, 1413 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  7. A Acin, D Drub, M Lewenstein and A Sanpera, Phys. Rev. Lett. 87, 040401 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  8. T Eggeling and R F Werner, Phys. Rev. A 63, 042111 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  9. C Eltscka, A Osterloh, J Siewert and A Uhlmann, New J. Phys. 10, 043014 (2008)

    Article  ADS  Google Scholar 

  10. O Guhne and M Seevinck, New J. Phys. 12, 053002 (2010)

    Article  ADS  Google Scholar 

  11. E Jung, M R Hwang, D K Park and J W Son, Phys. Rev. A 79, 024306 (2009)

    Article  ADS  Google Scholar 

  12. M Huber, F Mintert, A Gabriel and B C Hiesmayr, Phys. Rev. Lett. 104, 210501 (2010)

    Article  ADS  Google Scholar 

  13. W K Wootters, Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  14. M Horodecki, P Horodecki and R Horodecki, Phys. Lett. A 223, 1 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  15. M Horodecki, P Horodecki and R Horodecki, Phys. Rev. Lett80, 5239 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  16. F Bohnet-Waldraff, D Braun and O Giraud, Phys. Rev. A 94, 042343 (2016)

    Article  ADS  Google Scholar 

  17. T S Mahesh, C S Sudheer Kumar and T Bhosale Udaysinh, Quantum correlations in NMR systems (Springer International Publishing, 2017)

    Book  Google Scholar 

  18. U Fano, Phys. Rev.  90, 577 (1953)

    Article  ADS  Google Scholar 

  19. U Fano, Rev. Mod. Phys. 29, 74 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  20. U Fano, Rev. Mod. Phys.  55, 855 (1983)

    Article  ADS  Google Scholar 

  21. G Ramachandran, A R Usha Devi, P Devi and Swarnamala Sirsi, Found. Phys. 26, 401 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  22. G Racah, Group theory and spectroscopy, CERN report, 61 (1961)

  23. M E Rose, Elementary theory of angular momentum (John Wiley, 1957)

    MATH  Google Scholar 

  24. A R Usha Devi, Swarnamala Sirsi, G Ramachandran and P Devi, Int. J. Mod. Phys. A 12, 2779 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S P Suma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suma, S.P., Sirsi, S. Trivariate analysis of two qubit symmetric separable state. Pramana - J Phys 91, 24 (2018). https://doi.org/10.1007/s12043-018-1598-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-018-1598-x

Keywords

PACS No

Navigation