Skip to main content
Log in

Modified KdV–Zakharov–Kuznetsov dynamical equation in a homogeneous magnetised electron–positron–ion plasma and its dispersive solitary wave solutions

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Propagation of three-dimensional nonlinear ion-acoustic solitary waves and shocks in a homogeneous magnetised electron–positron–ion plasma is analysed. Modified extended mapping method is introduced to find ion-acoustic solitary wave solutions of the three-dimensional modified Korteweg–de Vries–Zakharov–Kuznetsov equation. As a result, solitary wave solutions (which represent electrostatic field potential), electric fields, magnetic fields and quantum statistical pressures are obtained with the aid of Mathematica. These new exact solitary wave solutions are obtained in different forms such as periodic, kink and antikink, dark soliton, bright soliton, bright and dark solitary wave etc. The results are expressed in the forms of hyperbolic, trigonometric, exponential and rational functions. The electrostatic field potential and electric and magnetic fields are shown graphically. These results demonstrate the efficiency and precision of the method that can be applied to many other mathematical and physical problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N A Krall and A W Trivelpiece, Principle of plasma physics  (McGraw-Hill, New York, 1973) p. 106

    Google Scholar 

  2. S Ichimaru, Basic principles of plasma physics, A statistical approach  (Benjamin, New York, 1973) p. 77

    Google Scholar 

  3. R J Goldston and P H Rutherford, Introduction to plasma physics (Institute of Physics Publishing, Bristol, 1995) p. 363

    Book  Google Scholar 

  4. A Hasegawa, Plasma instabilities and nonlinear effects  (Springer, New York, 1975) p. 34

    Book  Google Scholar 

  5. R C Davidson, Methods in nonlinear plasma theory  (Academic, New York, 1972) p. 15

    Google Scholar 

  6. R A Truemann and W Baumjohann, Advanced space plasma physics  (Imperial College, London, 1997) p. 243

    Book  Google Scholar 

  7. S I Popel, S V Vladimirov and P K Shukla, Phys. Plasmas  2, 716 (1995)

    Article  Google Scholar 

  8. M J Rees, The very early Universe  edited by G W Gibbons, S W Hawking and S Siklas (Cambridge University Press, Cambridge, 1983)

    Google Scholar 

  9. W Misner, K S Throne and J A Wheeler, Gravitation  (Freeman, San Francisco, 1973) p. 763

    Google Scholar 

  10. H R Miller and P J Witter, Active galactic nuclei  (Springer, Berlin, 1987) p. 202

    Google Scholar 

  11. P Goldreich and W H Julian, Astrophys. J.  157, 869 (1969)

    Article  Google Scholar 

  12. F C Michel, Rev. Mod. Phys.  54, 1 (1982)

    Article  Google Scholar 

  13. E Tandberg-Hansen and A G Emshie, The physics of solar flares  (Cambridge University Press, Cambridge, 1988) p. 124

    Google Scholar 

  14. C M Surko, M Leventhal, W S Crane, A Passner and F Wysocki, Rev. Sci. Instrum.  57, 1862 (1986)

    Article  Google Scholar 

  15. C M Surko and T Murphy, Phys. Fluids B  2, 1372 (1990)

    Article  Google Scholar 

  16. Y N Nejoh, Phys. Plasmas  3, 1447 (1996)

    Article  Google Scholar 

  17. H Kakati and K S Goswami, Phys. Plasmas  5, 4229 (1998)

    Article  Google Scholar 

  18. H Kakati and K S Goswami, Phys. Plasmas  7, 808 (2000)

    Article  Google Scholar 

  19. Q Haque, H Saleem and J Vranjes, Phys. Plasmas  9, 474 (2002)

    Article  Google Scholar 

  20. A R Seadawy, Comput. Math. Appl.  67, 172180 (2014)

    Article  Google Scholar 

  21. A R Seadawy, Phys. Plasmas  21, 052107 (2014)

    Article  Google Scholar 

  22. A H Khater, D K Callebaut, W Malfliet and A R Seadawy, Phys. Scr.  64, 533 (2001)

    Article  Google Scholar 

  23. A H Khater, D K Callebaut and A R Seadawy, Phys. Scr.  67, 340 (2003)

    Article  Google Scholar 

  24. S K El-Labany, W M Moslem, E I El-Awady and P K Shukla, Phys. Lett. A  375, 159 (2010)

    Article  Google Scholar 

  25. S Mahmood, A Mushtaq and H Saleem, New J. Phys.  5, 28 (2003)

    Article  Google Scholar 

  26. I J Lazarus, R Bharuthram and M A Hellberg, J. Plasma Phys. 74, 519 (2008)

    Article  ADS  Google Scholar 

  27. A R Seadawy, Physica A  439, 124 (2015)

    Article  MathSciNet  Google Scholar 

  28. D Lu, A R Seadawy, M Arshad and J Wang, Results Phys.  7, 899 (2017)

    Article  Google Scholar 

  29. M Arshad, A R Seadawy, D Lu and J Wang, Results Phys.  6, 1136 (2016)

    Article  Google Scholar 

  30. A R Seadawy, Physica A  455, 44 (2016)

    Article  MathSciNet  Google Scholar 

  31. A R Seadawy, Math. Meth. Appl. Sci.  40, 1598 (2017)

    Google Scholar 

  32. Abdullah, A Seadawy and J Wang, Result Phys.  7, 4269 (2017)

  33. A R Seadawy and K El-Rashidy, Pramana – J. Phys.  87, 20 (2016)

    Article  Google Scholar 

  34. A R Seadawy, Pramana – J. Phys. 89: 49 (2017)

    Article  ADS  Google Scholar 

  35. M Khater, A R Seadawy and D Lu, Pramana – J. Phys. (2018) (in press)

  36. M A Helal and A R Seadawy, Comput. Math. Appl.  64, 3557 (2012)

    Article  MathSciNet  Google Scholar 

  37. M A Helal, A R Seadawy and R S Ibrahim, Appl. Math. Comput.  219, 5635 (2013)

    MathSciNet  Google Scholar 

  38. M A Helal and A R Seadawy, Z. Angew. Math. Phys. (ZAMP)  62, 839 (2011)

    Article  Google Scholar 

  39. M A Helal and A R Seadawy, Phys. Scr.  80, 350 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NSF of China (Grants 11571140, 11671077, 11371090), Fellowship of Outstanding Young Scholars of Jiangsu Province (BK20160063), NSF of Jiangsu Province (BK20150478).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aly R Seadawy or Jun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, Seadawy, A.R. & Wang, J. Modified KdV–Zakharov–Kuznetsov dynamical equation in a homogeneous magnetised electron–positron–ion plasma and its dispersive solitary wave solutions. Pramana - J Phys 91, 26 (2018). https://doi.org/10.1007/s12043-018-1595-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-018-1595-0

Keywords

PACS Nos

Navigation