Skip to main content

Advertisement

Log in

Characterisation of electric discharge in hollow electrode Z-pinch device by means of Rogowski coils

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The hollow electrode Z-pinch (HEZP) is expressed as a new shape of Z-pinch devices in which one of the electrodes is ring-shaped. The periodic time of the discharge current is \(35\ \mu \hbox {s}\) with a total system inductance of 288 nH, total system resistance of \(14\ \hbox {m}\Omega \), and 34% deposited energy for a charging voltage of 8 kV. The pinch effect appears in the shape of a sharp spike in the signal of the discharge voltage and dip in the signal of discharge current, which leads to an increase in the plasma inductance at the pinch time. The plasma current density, which is measured using miniature Rogowski coil for 8 kV charging voltage and 1 torr pressure, has a maximum value of \(12.1\ \hbox {kA}/\hbox {cm}^{2}\) near the axis of the discharge tube and decreases toward the wall. The helium gas pressure in the range of 1–2 torr expresses the situation of the maximum current density. The pinch time increases by increasing the gas pressure and also by decreasing the charging voltage leading to a decrement of the peak discharge current and hence the magnetic field is also decreased. A delay time of at least \(4.1\ \mu \hbox {s}\) is found to be required to form the pinch for the implemented set-up of anode–cathode dimensions and interdistance. The calculated sheath velocity is in the range of 1.2–\(6\ \hbox {cm}/\mu \hbox {s}\) which is directly proportional to the charging voltage and inversely proportional to the gas pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M G Haines, Plasma Phys. Control. Fusion  53, 093001 (2011)

    Article  ADS  Google Scholar 

  2. C Moreno, H Bruzzone, J Martinez and A Clausse, IEEE Trans. Plasma Sci.  28, 1735, (2000)

    Article  ADS  Google Scholar 

  3. R A Vesey, M C Herrmann, R W Lemke, M P Desjarlais, M E Cuneo, W A Stygar, G R Bennett, R B Campbell, P J Christenson, T A Mehlhorn, J L Porter and S A Slutz, Phys. Plasmas  14, 056302 (2007)

    Article  ADS  Google Scholar 

  4. M K Matzen, Phys. Plasmas  4, 1519 (1997)

    Article  ADS  Google Scholar 

  5. M E Cuneo et al, Phys. Plasmas  8, 2257 (2001)

    Article  ADS  Google Scholar 

  6. M G Haines, S V Lebedev, J P Chittenden, F N Beg, S N Bland and A E Dangor, Phys. Plasmas  7(5), 1672 (2000)

    Article  ADS  Google Scholar 

  7. V V Aleksandrov, E V Grabovski, A N Gribov, A N Gritsuk, S F Medovshchikov, K N Mitrofanov and G M Oleinik, Plasma Phys. Rep.  35(2), 136 (2009)

    Article  ADS  Google Scholar 

  8. V D Selemir, Plasma Phys. Rep.  33(5), 381 (2007)

    Article  ADS  Google Scholar 

  9. R G Jahn and W Von Jaskowsky, AIAA J.  2, 1749 (1964)

    Article  ADS  Google Scholar 

  10. E Torbert, I Furno, T Intrator and E Hemsing, Rev. Sci. Instrum.  74, 5097 (2003)

    Article  ADS  Google Scholar 

  11. S H Ishii, T Hara, F Sonoda, M Fukuta and I Hayashi, Elect. Eng. Jap.  106(3), 487(1986)

    Article  Google Scholar 

  12. F Dothan, H Riege, E Boggasch and K Frank, J. Appl. Phys.  62, 3585 (1987)

    Article  ADS  Google Scholar 

  13. Sh Al-Hawat, M Akel and S Lee, J. Fusion Energy  30, 494 (2011)

    Article  ADS  Google Scholar 

  14. M E Abdel-kader, M A Abd Al-Halim, A M Shagar, H A Eltayeb, H A Algamal and A H Saudy, J. Fusion Energy  33, 53 (2014)

    Article  Google Scholar 

  15. H Bruzzone, A Clausse, M Barbaglia and H Acuna, Plasma Phys. Control. Fusion  54, 012001 (2012)

    Article  ADS  Google Scholar 

  16. Y P Zhao, S Jiang, Y Xie and Q Wang, Appl. Phys. B  99, 535 (2010)

    Article  ADS  Google Scholar 

  17. M Akel and S Lee, J. Fusion Energy  32, 111 (2013)

    Article  ADS  Google Scholar 

  18. M Akel, S Lee and S H Saw, IEEE Trans. Plasma Sci.  40(12), 3290 (2012)

    Article  ADS  Google Scholar 

  19. S Lee, S H Saw, L Soto, S V Springham and S P Moo, Plasma Phys. Control. Fusion  51, 075006 (2009)

    Article  ADS  Google Scholar 

  20. M N Sharak, S Goudarzi, A Raeisdana and M Jafarabadi, J. Fusion Energy  32, 258 (2013)

    Article  ADS  Google Scholar 

  21. M A Abd Al-Halim and M S Afify, Eur. Phys. J. D  57, 71 (2017)

    Google Scholar 

  22. A Kanani, M N Nasrabadi, B Shirani and I Jabbari, Pramana – J. Phys.  85(1), 149 (2015)

    Article  ADS  Google Scholar 

  23. M Z Khan, L K Lim, S L Yap and C S Wong, Pramana – J. Phys.  85(6), 1207 (2015)

    Article  ADS  Google Scholar 

  24. Z Ali, S Lee, F D Ismail, Saktioto, J Ali and P P Yupapin, Procedia Eng.  8, 393 (2011)

    Article  Google Scholar 

  25. Marek J Sadowski and Marek Scholz, Nucleonika 57, 11 (2012)

    Google Scholar 

  26. K T Lee, S H Kim, D Kim and T N Lee, Phys. Plasmas 3, 1340 (1996)

    Article  ADS  Google Scholar 

  27. T E Markusi, K A Polziny, J Z Levinez, C A McLeaveyx and E Y Choueiri, AIAA J.  17, 3257 (2000)

    Google Scholar 

  28. M Keidar, I D Boyd, N Lepsetz, Th E Markusic, K A Polzin and E Y Choueiri, 37th AIAA \(/\) ASME \(/\) SAE \(/\) ASEE Joint Propul. Conf. (Salt Lake City, UT, July 8–11, 2001) AIAA 2001-3898

  29. P C Sleziona, M Auweter-Kurtz and H O Schrade, Proc. 23rd IEPC (Seattle, WA, USA, 1993) p. 609

  30. R A Serway and J W Jewett, Physics for scientists and engineers with modern physics, 8th edn (Brooks\(/\)Cole, Belmont, CA, 2010)

    Google Scholar 

  31. S Lee, Appl. Phys. Lett.  95, 151503 (2009)

    Article  ADS  Google Scholar 

  32. R Verma, R S Rawat, P Lee, A T L Tan, H Shariff, G J Ying, S V Springham, A Talebitaher, U Ilyas and A Shyam, IEEE Trans. Plasma Sci.  40(12), 3280 (2012)

    Article  ADS  Google Scholar 

  33. F Veloso, C Pavez, J Moreno, V Galaz, M Zambra and L Soto, J. Fusion Energy  31, 30 (2012)

    Article  ADS  Google Scholar 

  34. M E Abdel-kader, M A Abd Al-Halim, A M Shagar and A H Saudy, Eur. Phys. J. D  68, 160 (2014)

    Article  ADS  Google Scholar 

  35. D G Fearn and E R Wooding, Brit. J. Appl. Phys.  18, 213 (1967)

    Article  ADS  Google Scholar 

  36. M Emami, Laser Phys.  17(1), 1, (2007)

    Article  Google Scholar 

  37. A Donges, G Herziger, H Krompholz, F Ruhl and K Schonbach, Phys. Lett. A  76, 391 (1980)

    Article  ADS  Google Scholar 

  38. M Mathuthu, T G Zengeni and A V Gholap, IEEE Trans. Plasma Sci.  25, 1382 (1997)

    Article  Google Scholar 

  39. H Schmidt, Nucleonika  46, 15 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M A ABD Al-Halim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aser, M.S., Abdel-Kader, M.E., Shagar, A.M. et al. Characterisation of electric discharge in hollow electrode Z-pinch device by means of Rogowski coils. Pramana - J Phys 91, 22 (2018). https://doi.org/10.1007/s12043-018-1594-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-018-1594-1

Keywords

PACS No

Navigation