Skip to main content
Log in

Theoretical lower limit of mass of phonon and critical mass for matter–dark matter conversion

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

From Planck’s equation for black body radiation and de Broglie’s wave–particle duality relation, we can get a relation between the mass of a phonon and frequency of the emitted radiation. From this relation, we get the theoretical lower limit of the mass of a phonon and critical mass for matter–dark matter conversion. The maximum matter density and limit of the string length are also discussed in this respect. It is observed that there is a critical mass of the smallest particle, which is \(7.367 \times 10^{-51}\) kg, above which we get normal matter and below, the dark matter. It is also observed that if phonon obeys the de Broglie’s equation, generation of an electromagnetic radiation of frequency less than 56638721410 Hz is not possible by thermal heating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M Planck, Sitzungsberichte Ber. Akad. 440 (1899)

  2. M Planck, Ann. d. Phys. 1, 99 (1900)

    Google Scholar 

  3. M Planck, Berichte der Deutschen Phys. Ges. 2, Oct. 19 (1900)

  4. L de Broglie, Ann. d. Phys. 3, 22 (1925)

    Article  Google Scholar 

  5. M Planck, Ann. Phys. 4, 553 (1901)

    Article  Google Scholar 

  6. B McBryan, arXiv:1312.0340 [physics.gen-ph]

  7. B Paik, Pramana – J. Phys. 89, 26 (2017)

    Google Scholar 

  8. N Banerjee and S Sen, Pramana – J. Phys. 85, 1123 (2015)

    Google Scholar 

  9. J D Bekensteing, Phys. Rev. D 7, 2333 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  10. K Nouicer, Phys. Lett. B 646 63 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  11. J H Schwarz, Introduction to superstring theory, arXiv:hep-ex/0008017v1

  12. K Becker, M Becker and J Schwarz, String theory and M-theory: A modern introduction (Cambridge University Press, UK, 2007), ISBN 978-0-521-86069-7

    Google Scholar 

  13. E Bergshoeff, E Sezgin and P Townsend, Phys. Lett. B 189, 75 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  14. D Lust, E Plauschinn and V V Camell, J. High Energy Phys. 2017, 27 (2017)

    Article  Google Scholar 

  15. Planck Collaboration: P A R Ade et al, Astron. Astrophys. 571, (2014), https://doi.org/10.1051/0004-6361/201321529

  16. M Francis, First Planck results: The Universe is still weird and interesting (University of Cambridge, 2013)

  17. C J Copi, D N Schramm and M S Turner, Science 267, 192 (1995)

    Article  ADS  Google Scholar 

  18. B Moore et al, Astrophys. J. Lett. 524, L19 (1999)

    Article  ADS  Google Scholar 

  19. A Datta, Pramana – J. Phys. 89, 54 (2017)

    Google Scholar 

  20. L Nottale, Scale relativity (Imperial College Press, London, 2011)

    MATH  Google Scholar 

  21. L Amendola and S Tsujikawa, Dark energy: Theory and observations (Cambridge University Press, Cambridge, UK, 2010)

    Book  MATH  Google Scholar 

  22. J Mageuijo and L Smolin, Lorentz invariance with an invariant energy scale, arXiv:hep-th/0112090V2, (2001)

  23. L Marek-Crnjac, Am. J. Mod. Phys. 2, 255 (2013)

    Article  Google Scholar 

  24. A Bag, J. Phys. Astron. Res. 2, 56 (2015)

    Google Scholar 

  25. N A Bahell, J P Ostriker, S Perlmutter and P J Steinhardt, Science 284, 1481 (1999)

    Article  ADS  Google Scholar 

  26. A G Riess et al, Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  27. B Schmidt et al, Astrophys. J. 507, 46 (1998)

    Article  ADS  Google Scholar 

  28. R A Daly and S G Djorgovski, Astrophys. J. 597, 9 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Author thanks IISER Kolkata for financial support and Dr Pradip Ghorai, author’s post-doctorate research guide, for giving an opportunity to publish this work independently.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arijit Bag.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bag, A. Theoretical lower limit of mass of phonon and critical mass for matter–dark matter conversion. Pramana - J Phys 91, 21 (2018). https://doi.org/10.1007/s12043-018-1593-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-018-1593-2

Keywords

PACS Nos

Navigation