Skip to main content
Log in

A comparative study of graphene and graphite-based field effect transistor on flexible substrate

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In the present era, there has been a great demand of cost-effective, biodegradable, flexible and wearable electronics which may open the gate to many applications like flexible displays, RFID tags, health monitoring devices, etc. Due to the versatile nature of plastic substrates, they have been extensively used in packaging, printing, etc. However, the fabrication of electronic devices requires specially prepared substrates with high quality surfaces, chemical compositions and solutions to the related fabrication issues along with its non-biodegradable nature. Therefore, in this report, a cost-effective, biodegradable cellulose paper as an alternative dielectric substrate material for the fabrication of flexible field effect transistor (FET) is presented. The graphite and liquid phase exfoliated graphene have been used as the material for the realisation of source, drain and channel on cellulose paper substrate for its comparative analysis. The mobility of fabricated FETs was calculated to be \(83\,\hbox {cm}^{2}/\hbox {V}\,\hbox {s}\) (holes) and \(33\,\hbox {cm}^{2}/\hbox {V}\,\hbox {s}\) (electrons) for graphite FET and \(100\,\hbox {cm}^{2}/\hbox {V}\,\hbox {s}\) (holes) and \(52\,\hbox {cm}^{2}/\hbox {V}\,\hbox {s}\) (electrons) for graphene FET, respectively. The output characteristic of the device demonstrates the linear behaviour and a comprehensive increase in conductance as a function of gate voltages. The fabricated FETs may be used for strain sensing, health care monitoring devices, human motion detection, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T Yamada, Y Hayamazu and Y Yamamoto, Nat. Nano technol. 6, 296 (2011)

    Article  ADS  Google Scholar 

  2. Y Ohno, K Maehashi and K Matsumoto, Proc. SPIE 8031, 903 (2011)

    Google Scholar 

  3. O Habibpour, J Vukusic and J Stake, IEEE Trans. Microw. Theory Tech. 61, 841 (2013)

    Article  ADS  Google Scholar 

  4. L Xiang, Z Wang, Z Liu, S E Weigum and Q Yu, IEEE Sens. J. 16, 8359 (2016)

    Google Scholar 

  5. T Han, H Kim, S Kwon and T Lee, Mater. Sci. Eng. R Rep. 118, 1 (2017)

    Article  Google Scholar 

  6. W Su and B Chen, Pramana – J. Phys. 89, 37 (2017)

    Article  ADS  Google Scholar 

  7. R Singh and C C Tripathi, Int. J. Electrochem. Sci. 11, 6336 (2016)

    Article  Google Scholar 

  8. M Shaygan, Z Wang, M S Elsayed, M Otto, G Iannaccone, A H Ghareeb, G Fiori, R Negra and D Neumaier, Nanoscale 9, 11944 (2017)

    Article  Google Scholar 

  9. S J Kim, K Choi, B Lee and B H Hong, Ann. Rev. Mater. Res. 45, 63 (2015)

    Article  ADS  Google Scholar 

  10. K Bhatt, S Shriwastava, S Kumar, Sandeep and C C Tripathi, Terahertz spectroscopy–a cutting edge technology edited by Jamal Uddin (Intech, Croatia, EU, 2017) Chapter 5, pp. 83–100

  11. K Bhatt and C C Tripathi, Indian J. Pure Appl. Phys. 53, 827 (2015)

    Google Scholar 

  12. J B Chahardeh, Int. J. Adv. Res. Comput. Commun. Eng. 1, 193 (2012)

    Google Scholar 

  13. V Singh, D Joung, L Zhei and S Das, Prog. Mater. Sci. 56, 1178 (2011)

    Article  Google Scholar 

  14. A Nathan, A Ahnood, M T Cole, S Lee, Y Suzuki, P Hiralal, F Bonaccorso, T Hasan, L Garcia-Gancedo, A Dyadyusha, S Haque, P Andrew, S Hofmann, J Moultrie, D Chu, A J Flewitt, A C Ferrari, M J Kelly, J Robertson, G A J Amaratunga and W I Milne, Proc. IEEE (Spec. Centen. Issue) 100, 1486 (2012)

    Article  Google Scholar 

  15. S Das, R Gulotty, A V Sumant and A Roelofs, Nano Lett. 14, 2861 (2014)

    Article  ADS  Google Scholar 

  16. M U Jewel, T A Siddiquee and Md Rafiqul Islam, IEEE International Conference on Electrical Information and Communication Technology (EICT), pp. 1–5 (2014)

  17. Z Wang, S Eigler and M Halik, Appl. Phys. Lett. 104, 243502 (2014)

    Article  ADS  Google Scholar 

  18. S Kaanaparthi and S Badhulika, Green Chem. 18, 3640 (2016)

    Article  Google Scholar 

  19. R-Z Li, A Hu and K D Oakes, ACS Appl. Mater. Interfaces 6, 21721 (2014)

    Article  Google Scholar 

  20. D H Lien, Z K Kao, T H Huang, Y C Liao, S C Lee and J H He, ACS Nano 8, 7613 (2014)

    Article  Google Scholar 

  21. D Khim, H Han, K-J Baeg, J Kim, S-W Kwak, D-Y Kim and Y-Y Noh, Adv. Mater. 25, 4302 (2013)

    Article  Google Scholar 

  22. K S Novoselov, V I Fal, M G Schwab and K Kim, Nature 490, 192 (2012)

    Article  ADS  Google Scholar 

  23. L Valentini, M Cardinali, M Grkovic, P S Uskokovic, F Alimenti, L Roselli and J M Kenny, Sci. Adv. Mater. 5, 530 (2013)

    Article  Google Scholar 

  24. R Singh, D Kumar and C C Tripathi, Arab. J. Sci. Eng. 42, 2417 (2017)

    Article  Google Scholar 

  25. S Wang, Z Jin, X Huang, S Peng, D Zhang and J Shi, Mater. Res. Express 3, 095602 (2016)

    Article  ADS  Google Scholar 

  26. D H Tien, J-Y Park, K B Kim, N Lee and Y Seo, Sci. Rep. 6, 25050 (2016)

    Article  ADS  Google Scholar 

  27. S Mandal, R K Arun, N Chanda, S Das, P Agarwal, J Akhtar and P Mishra, J. Electron. Mater. 44, 6 (2015)

    Article  ADS  Google Scholar 

  28. N Kurra, D Dutta and G U Kulkarni, Phys. Chem. Chem. Phys. 15, 8367 (2014)

    Article  Google Scholar 

  29. S-K Lee, H Y Jang, S Jang, E Choi, B H Hong, J Lee, S Park and J-H Ahn, Nano Lett. 12, 3472 (2012)

    Article  ADS  Google Scholar 

  30. X Liao, Q Liao, H Si and S Cao, Adv. Funct. Mater. 25, 2395 (2015)

    Article  Google Scholar 

  31. Monika et al, Indian J. Pure Appl. Phys. Article ID: IJPAP-4387 (2017) (in press)

Download references

Acknowledgements

Support from Research Laboratory (ECE), University Institute of Engineering and Technology, Kurukshetra is gratefully acknowledged by the author. Authors are also thankful to Dr Y Dwivedi, Physics Department, NIT Kurukshetra, Haryana for various technical discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kapil Bhatt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatt, K., Rani, C., Vaid, M. et al. A comparative study of graphene and graphite-based field effect transistor on flexible substrate. Pramana - J Phys 90, 75 (2018). https://doi.org/10.1007/s12043-018-1562-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-018-1562-9

Keywords

PACS No

Navigation