, 90:65 | Cite as

Investigation of graphene-integrated tunable metamaterials in THz regime

  • S Mahircan Demir
  • Yahya Yüksek
  • Cumali Sabah


A metallic fishnet metamaterial structure in sub-THz region is presented. The proposed structure is based on hexagonal resonators. Simulations have been performed by a 3D full-wave electromagnetic simulator and a negative refractive index has been observed at the frequency range between 0.55 and 0.70 THz with the help of the graphene layer. In order to observe the effect of the graphene layer, the metamaterial structure has been simulated and examined before and after graphene integration. Significant modification in the propagation properties has been observed after the graphene integration. Change in S-parameters with the size variation of hexagonal resonators and alteration in graphene thickness are also presented as a parametric study to show the tunability of the structure. Suitability of the metamaterial for sensor applications has been investigated. The proposed metamaterial structure is promising to be effectively used for tunability and sensor applications.


Graphene-integrated metamaterials fishnet sensor applications tunability 


81.05.Xj 78.67.Pt 41.20.-q 73.22.Pr 



The work reported here was carried out at Middle East Technical University-Northern Cyprus Campus (METU-NCC). It is supported by METU-NCC under grant numbers of BAP-FEN-15-D-3 and BAP-FEN-16-K-8.


  1. 1.
    V G Veselago, Sov. Phys. Usp. 10, 509 (1968)ADSCrossRefGoogle Scholar
  2. 2.
    O T Gunduz and C Sabah, Opt. Eng. 54, 087101-1 (2015)CrossRefGoogle Scholar
  3. 3.
    W Li, X Zhou, Y Ying, X Qiao, F Qin, Q Li and S Che, AIP Adv. 5, 067151-1 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    F Dincer, M Karaaslan, E Unal, K Delihacioglu and C Sabah, Prog. Electromagn. Res. 144, 123 (2014)CrossRefGoogle Scholar
  5. 5.
    Z Yu, S Liu, C Fang, X Huang and H Yang, Phys. Scr. 90, 065501 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    W Withayachumnankul, IEEE Photon. J. 1, 99 (2009)CrossRefGoogle Scholar
  7. 7.
    H Tao, N I Landy, C M Bingham, X Zhang, R D Averitt and W J Padilla, Opt. Express 16, 7181 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    L Cong, S Tan, R Yahiaoui, F Yan, W Zhang and R Singh, Appl. Phys. Lett. 106, 031107 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    X He, S Yan, Q Ma, Q Zhang, P Jia, F Wu and J Jiang, Opt. Commun. 340, 44 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    B Mulla and C Sabah, Wave Random Complex 25, 382 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    S Ayas, G Bakan and A Dana, Opt. Express 23, 11763 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    H Wang and L Wang, Opt. Express 21, A1078 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    K I Bolotin, K J Sikes, Z Jiang, M Klima, G Fudenberg, J Hone, P Kim and H L Stormer, Solid State Commun. 146, 351 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    A K Geim, Science 324, 1530 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    N Papasimakis, Z Luo, Z X Shen, F De Angelis, E Di Fabrizio, A E Nikolaenko and N I Zheludev, Opt. Express 18, 8353 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    X He, Carbon 82, 229 (2015)CrossRefGoogle Scholar
  17. 17.
    X He, Z-Y Zhao and W Shi, Opt. Lett. 40, 178 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    X He, F Lin, F Liu and W Shi, Nanotechnology 27, 485202 (2016)CrossRefGoogle Scholar
  19. 19.
    X He, P Gao and W Shi, Nanoscale 8, 10388 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    Wei Su and Bingyan Chen, Pramana – J. Phys. 89, 37 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    C Sabah, Opt. Commun. 285, 4549 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    M P Ustunsoy and C Sabah, J. Alloys Compd. 687, 514 (2016)CrossRefGoogle Scholar
  23. 23.
    C Sabah and H G Roskos, Curr. Appl. Phys. 12, 443 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    A Mary, S G Rodrigo, F J Garcia-Vidal and L Martin-Moreno, Phys. Rev. Lett. 101, 103902-1 (2008)Google Scholar
  25. 25.
    C Garcia-Meca, R Ortuno, F J Rodriguez-Fortuno, J Marti and A Martinez, Opt. Lett. 34, 1603 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    R Ortuno, C Garcia-Meca, F J Rodriguez-Fortuno, J Marti and A Martinez, Phys. Rev. B 79, 075425-1 (2009)Google Scholar
  27. 27.
    Z Huang, J Xue, Y Hou, J Chu and D H Zhang, Phys. Rev. B 74, 193105-1 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    C Sabah and S Uckun, Prog. Electromagn. Res. 91, 349 (2009)CrossRefGoogle Scholar
  29. 29.
    N Chikhi, E Di Gennaro, E Esposito and A Andreone, in Terahertz and mid infrared radiation: Generation, detection and applications edited by Mauro F Pereira and Oleksiy Shulika (Springer, Dordrecht, 2011) p. 9Google Scholar
  30. 30.
    C Sabah, J. Mater. Sci. Mater. 27, 4777 (2016)CrossRefGoogle Scholar
  31. 31.
    C Sabah, F Dincer, M Karaaslan, E Unal, O Akgol and E Demirel, Opt. Commun. 322, 137 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    C Sabah and H G Roskos, Eur. Phys. J. Appl. Phys. 61, 30402-1 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    C Sabah and H G Roskos, Microsyst. Technol. 18, 2071 (2012)CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Department of Electrical and Electronics EngineeringMiddle East Technical University-Northern Cyprus Campus (METU-NCC)TRNC / Mersin 10Turkey
  2. 2.Kalkanli Technology Valley (KALTEV)Middle East Technical University-Northern Cyprus Campus (METU-NCC)TRNC / Mersin 10Turkey

Personalised recommendations