Skip to main content

Advertisement

Log in

Numerical study of entropy generation and melting heat transfer on MHD generalised non-Newtonian fluid (GNF): Application to optimal energy

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This paper concerns an application to optimal energy by incorporating thermal equilibrium on MHD-generalised non-Newtonian fluid model with melting heat effect. Highly nonlinear system of partial differential equations is simplified to a nonlinear system using boundary layer approach and similarity transformations. Numerical solutions of velocity and temperature profile are obtained by using shooting method. The contribution of entropy generation is appraised on thermal and fluid velocities. Physical features of relevant parameters have been discussed by plotting graphs and tables. Some noteworthy findings are: Prandtl number, power law index and Weissenberg number contribute in lowering mass boundary layer thickness and entropy effect and enlarging thermal boundary layer thickness. However, an increasing mass boundary layer effect is only due to melting heat parameter. Moreover, thermal boundary layers have same trend for all parameters, i.e., temperature enhances with increase in values of significant parameters. Similarly, Hartman and Weissenberg numbers enhance Bejan number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. L Ai and K Vafai, Num. Heat Transfer 47, 955 (2005)

    Article  Google Scholar 

  2. A J Friedman, S J Dyke and B M Phillips, Smart Mater. Struct. 22, 045001 (2013)

    Article  ADS  Google Scholar 

  3. B C Sakiadis, AIChE J. 7, 26 (1961)

    Article  Google Scholar 

  4. L J Crane, Z. Angew. Math. Phys. 21, 645 (1970)

    Google Scholar 

  5. P S Gupta and A S Gupta, Can. J. Chem. Engg. 55, 744 (1977)

    Article  Google Scholar 

  6. T Hayat, Z Abbas and M Sajid, Chaos Solitons Fractals 29, 840 (2009)

    Article  ADS  Google Scholar 

  7. S Nadeem, A Hussain and M Khan, Commun. Non-Linear Sci. Numer. Simulat. 15, 475 (2010)

    Article  ADS  Google Scholar 

  8. V I Vishnyakov and K B Pavlov, Magnetohydro-dynamics 8, 174 (1972)

    Google Scholar 

  9. R Moreau, Magnetohydrodynamics (Kluwer Academic Publishers, Dordrecht, 1990)

    Book  MATH  Google Scholar 

  10. P Singh and C B Gupta, Indian J. Theor. Phys. 53, 111 (2005)

    Google Scholar 

  11. A Bejan, Adv. Heat Transfer 15, 1 (1982)

    Article  ADS  Google Scholar 

  12. A Bejan, J. Appl. Phys. 79, 1191 (1996)

    Article  ADS  Google Scholar 

  13. A Bejan, J. Heat Transfer 101, 718 (1979)

    Article  Google Scholar 

  14. A Z Sahin, J. Heat Transfer 120, 76 (1998)

    Article  MathSciNet  Google Scholar 

  15. A Falahat, IJMSE 2, 44 (2011)

    Google Scholar 

  16. A Z Sahin, Heat Mass Transfer 35, 499 (1999)

    Article  ADS  Google Scholar 

  17. S Mahmud and R A Fraser, Int. J. Therm. Sci. 42, 177 (2003)

    Article  Google Scholar 

  18. S Mahmud and R A Fraser, Exergy 2, 140 (2002)

    Article  Google Scholar 

  19. S Saouli and S A Saouli, Int. Comm. Heat Mass Transfer 31, 879 (2004)

    Article  Google Scholar 

  20. N C Peddisetty, Pramana – J. Phys. 87: 62 (2016)

    Article  ADS  Google Scholar 

  21. M M Bhatti, A Zeeshan and R Ellahi, Pramana – J. Phys. 89: 48 (2017)

    Article  ADS  Google Scholar 

  22. N S Akbar, S Nadeem, R Ul Haq and Z H Khan, Indian J. Phys. 87, 1121 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bilal Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, Z., Mehmood, Z. & Ahmad, B. Numerical study of entropy generation and melting heat transfer on MHD generalised non-Newtonian fluid (GNF): Application to optimal energy. Pramana - J Phys 90, 64 (2018). https://doi.org/10.1007/s12043-018-1557-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-018-1557-6

Keywords

PACS Nos

Navigation