Skip to main content
Log in

Disturbance observer-based adaptive sliding mode hybrid projective synchronisation of identical fractional-order financial systems

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this paper, we have studied the hybrid projective synchronisation for incommensurate, integer and commensurate fractional-order financial systems with unknown disturbance. To tackle the problem of unknown bounded disturbance, fractional-order disturbance observer is designed to approximate the unknown disturbance. Further, we have introduced simple sliding mode surface and designed adaptive sliding mode controllers incorporating with the designed fractional-order disturbance observer to achieve a bounded hybrid projective synchronisation between two identical fractional-order financial model with different initial conditions. It is shown that the slave system with disturbance can be synchronised with the projection of the master system generated through state transformation. Simulation results are presented to ensure the validity and effectiveness of the proposed sliding mode control scheme in the presence of external bounded unknown disturbance. Also, synchronisation error for commensurate, integer and incommensurate fractional-order financial systems is studied in numerical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. F M Atay, S Jalan and J Jost, Complexity 15, 29 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  2. A W Hubler, G C Foster and K C Phelps, Complexity 12, 10 (2007)

    Article  Google Scholar 

  3. A A Kilbas, H M Srivastava and J J Trujillo, Theory and applications of fractional differential equations (Elsevier, Amsterdam, 2006)

    MATH  Google Scholar 

  4. R L Bagley and R A Calico, J. Guid. Control Dyn. 14, 304 (1991)

    Article  ADS  Google Scholar 

  5. O Heaviside, Electromagnetic theory (Chelsea, New York, 1971)

    MATH  Google Scholar 

  6. R C Koeller, J. Appl. Mech. 51, 299 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  7. D Kusnezov, A Bulagc and G D Dang, Phys. Rev. Lett. 82, 1136 (1999)

    Article  ADS  Google Scholar 

  8. N Laskin, Physica A 287, 482 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  9. R C Koeller, Acta Mech. 58, 251 (1986)

    Article  MathSciNet  Google Scholar 

  10. H H Sun, A A Abdelwahad and B Onaral, IEEE Trans. Auto. Contr. 29, 441 (1984)

    Article  Google Scholar 

  11. M Ichise, Y Nagayanagi and T Kojima, J. Electroanal. Chem. 33, 253 (1971)

    Article  Google Scholar 

  12. K A Moornani and M Haeri, ISA Trans. 48, 484 (2009)

    Article  Google Scholar 

  13. D Qian, C Li, R P Agarwal and P J Y Wong, Math. Comput. Model 52, 862 (2010)

    Article  Google Scholar 

  14. K Balachandran, J Y Park and J J Trujillo, Nonlinear Anal. Theory Methods Appl. 75, 1919 (2012)

    Article  Google Scholar 

  15. R Sakthivel, Y Ren and N I Mahmudov, Comput. Math. Appl. 62, 1451 (2011)

    Article  MathSciNet  Google Scholar 

  16. M P Aghababa, Commun. Nonlinear Sci. Numer. Simul. 17, 2670 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  17. H Ozbay, C Bonnet and A R Fioravanti, Syst. Control Lett. 61, 18 (2012)

    Article  Google Scholar 

  18. E A Boroujeni and H R Momeni, Signal Process. 92, 2365 (2012)

    Article  Google Scholar 

  19. H S Ahn, Y Q Chen and I Podlubny, Appl. Math. Comput. 187, 27 (2007)

    MathSciNet  Google Scholar 

  20. D Baleanu, A N Ranjbar, S J Sadati, H Delavari, T Abdeljawad and V Gejji, Rom. J. Phys. 56, 636 (2011)

    Google Scholar 

  21. I N Doye, M Zasadzinski, N E Radhy and A Bouaziz, in: Proceedings of Mediterranean Conference on Control & Automation (Greece, 2009) p. 324

  22. P L Mihailo and M S Aleksandar, Math. Comput. Model. 49, 475 (2009)

    Article  Google Scholar 

  23. Y Zhou, F Jiao and J Li, Nonlinear Anal. 71, 3249 (2009)

    Article  MathSciNet  Google Scholar 

  24. Y Zhou, F Jiao and J Li, Nonlinear Anal. 71, 2724 (2009)

    Article  MathSciNet  Google Scholar 

  25. Y Zhou and F Jiao, Comput. Math. Appl. 59, 1063 (2010)

    Article  MathSciNet  Google Scholar 

  26. C F Li, X N Luo and Y Zhou, Comput. Math. Appl. 59, 1363 (2010)

    Article  MathSciNet  Google Scholar 

  27. Y Zhou and F Jiao, Nonlinear Anal.: Real World Appl. 11, 4465 (2010)

    Article  MathSciNet  Google Scholar 

  28. J R Wang and Y Zhou, Nonlinear Anal.: Real World Appl. 12, 262 (2011)

    Article  MathSciNet  Google Scholar 

  29. I Podlubny, Fractional differential equations (Academic, New York, 1999)

    MATH  Google Scholar 

  30. R Hilfer, Applications of fractional calculus in physics (World Scientific, Hackensack, NJ, 2001)

    MATH  Google Scholar 

  31. P L Butzer and U Westphal, An introduction to fractional calculus (World Scientific, Singapore, 2000)

    Book  MATH  Google Scholar 

  32. F Mainardi, Chaos Solitons Fractals 7, 1461 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  33. I Grigorenko and E Grigorenko, Phys. Rev. Lett. 91, 034101 (2003)

    Article  ADS  Google Scholar 

  34. T T Hartley, C F Lorenzo and H K Qammer, IEEE Trans. CAS-I 42, 485 (1995)

    Google Scholar 

  35. Li Chunguang and Guanrong Chen, Physica A 341, 55 (2004)

  36. Lu, Jun Guo and Guanrong Chen, Chaos, Solitons & Fractals 27, 685 (2006)

    Article  ADS  Google Scholar 

  37. C Li and G Chen, Chaos Solitons Fractals 22, 549 (2004)

    Article  ADS  Google Scholar 

  38. C P Li and G J Peng, Chaos Solitons Fractals 22, 443 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  39. C P Li and W H Deng, Int. J. Mod. Phys. B 20,791 (2006)

    Article  ADS  Google Scholar 

  40. Ouannas Adel, Ahmad Taher Azar and Sundarapandian Vaidyanathan, Math. Meth. Appl. Sci. 40, 1804 (2017)

    Article  Google Scholar 

  41. S Bhalekar and V Gejji, Commun. Nonlinear Sci. Numer. Simulat. 15, 3536 (2010)

    Article  ADS  Google Scholar 

  42. Boulkroune Abdesselem et al, Advances in chaos theory and intelligent control (Springer, 2016) pp. 681–697

  43. Al-Sawalha, M Mossa and Ayman Al-Sawalha, Open Phys. 14, 304 (2016)

  44. A M A El-Sayed et al, Appl. Math. Model. 40, 3516 (2016)

    Article  MathSciNet  Google Scholar 

  45. E P Wilfrid and J P Barbot, Sliding mode control in engineering (CRC Press, 2002)

    Google Scholar 

  46. W H Chen, IEEE \(/\) ASME Trans. Mechatron. 9, 706 (2004)

  47. W H Chen, D J Ballance, P J Gawthrop and J O’Reilly, IEEE Trans. Ind. Electron. 47, 932 (2000)

    Article  Google Scholar 

  48. M Chen, W H Chen and Q X Wu, Sci. China Inf. Sci. 57, 012207 (2014)

    Google Scholar 

  49. M Chen and J Yu, Nonlinear Dyn. 82, 1671 (2015)

    Article  Google Scholar 

  50. M Chen and J Yu, Chin. J. Aeronaut. 28, 853 (2015)

    Article  Google Scholar 

  51. M Chen, B B Ren, Q X Wu and C S Jiang, Sci. China Inf. Sci. 58, 070202 (2015)

    MathSciNet  Google Scholar 

  52. L G Zhang and Y Yan, Nonlinear Dyn. 76, 1761 (2014)

    Article  Google Scholar 

  53. C Li, K Su and L Wu, J. Comput. Nonlinear Dyn. 8, 031005 (2013)

    Article  Google Scholar 

  54. L Liu, W Ding, C Liu, H G Ji and C Q Cao, Nonlinear Dyn. 76, 2059 (2014)

    Article  Google Scholar 

  55. Shao Shuyi, Mou Chen and Xiaohui Yan, Nonlinear Dyn. 83, 1855 (2016)

    Article  Google Scholar 

  56. C A Monje, Y Q Chen, B M Vinagre, D Y Xue and V FeliuBatlle, Fractional-order systems and controls: Fundamentals and applications (Springer, London, 2010)

    Book  MATH  Google Scholar 

  57. Y Li, Y Q Chen and I Podlubny, Automatica 45, 1965 (2009)

    Article  Google Scholar 

  58. C P Li and W H Deng, Appl. Math. Comput. 187, 777 (2007)

    MathSciNet  Google Scholar 

  59. Chen and Wei-Ching, Chaos Solitons Fractals 36, 1305 (2008)

    Article  ADS  Google Scholar 

  60. N Aguila-Camacho, M A Duarte-Mermoud and J A Gallegos, Commun. Nonlinear Sci. Numer. Simul. 19, 2951 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  61. L Li and Y G Sun, Entropy 17, 5580 (2015)

    Article  ADS  Google Scholar 

  62. Zhao Xiaoshan, Zhenbo Li and Shuang Li, Appl. Math. Comput. 217, 6031 (2011)

    MathSciNet  Google Scholar 

  63. Chen Liping, Yi Chai and Wu Ranchao, Disc. Dynam. Nature Soc. 2011 (2011), article ID 958393, https://doi.org/10.1155/2011/958393

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arti Tyagi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Tyagi, A. Disturbance observer-based adaptive sliding mode hybrid projective synchronisation of identical fractional-order financial systems. Pramana - J Phys 90, 67 (2018). https://doi.org/10.1007/s12043-018-1555-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-018-1555-8

Keywords

PACS No

Navigation