Advertisement

Pramana

, 90:61 | Cite as

Optimum parameters controlling distortion and noise of semiconductor laser under analog multichannel modulation

  • Alaa Mahmoud
  • Moustafa Ahmed
  • Safwat W Z Mahmoud
Article

Abstract

This paper presents a comprehensive modelling and simulation study on the optimum parameters that control the distortion and noise of semiconductor lasers (SLs) subject to multichannel modulation for use in analog cable television (CATV) fibre links. The study is based on numerical integration of the rate equation model of the semiconductor laser. The parameters comprise the modulation index per channel (m / ch), number of loaded channels (N) and fibre length \((L_{F})\). The signal distortions include the composite second-order (CSO) and composite triple beat (CTB) distortions. The noise is assessed in terms of the relative intensity noise (RIN) and carrier-to-noise ratio (CNR). In order to achieve acceptable CNR values for SL, m / ch should be less than 7.5 and 2% when loading 12 and 80 channels, respectively. For the CATV fibre link with \(L_{F} = 10 \hbox { km}\), the increase in the number of channels from 12 to 80 corresponds to lowering the optimum value of m / ch from 7 to 1%. The increase of \(L_{F}\) to 50 km limits the optimum value of m / ch between 1.4 and 1%, which corresponds to loading between 12 and 17 channels only.

Keywords

CATV fibre link distortion noise semiconductor laser multichannel modulation 

PACS Nos

42.55.Px 42.81.Cn 42.30.Lr 42.60.Mi 

References

  1. 1.
    J Lipson, L C Upadhyayula, S Y Huang, C B Roxlo, E J Flynn, P M Nitzsche, C J Mcgrath, G L Fenderson and M S Schaefer, IEEE Trans. Microw. Theory Technol. 38, 483 (1990)ADSCrossRefGoogle Scholar
  2. 2.
    M V Water, Low-cost CATV transmission in fibre -to-the-home networks, Master thesis (Eindhoven University of Technology, The Netherlands, 2005)Google Scholar
  3. 3.
    G P Agrawal, Fibre-optic communication systems (John Wiley and Sons Incorporation, New York, 2002) Vol. 222CrossRefGoogle Scholar
  4. 4.
    K Y Lau and A Yariv, Appl. Phys. Lett. 45, 1034 (1984)ADSCrossRefGoogle Scholar
  5. 5.
    H H Lu, Y P Lin and M C Lin, Opt. Commun. 22, 1 (2001)CrossRefGoogle Scholar
  6. 6.
    A Brillant, Digital and analog fibre optic communications for CATV and FTTx applications (SPIE Press Monograph, Bellingham, 2008) Vol. PM174CrossRefGoogle Scholar
  7. 7.
    W Ciciora, An overview: Cable television in the United States (Cable Television Laboratories, Louisville, 1995)Google Scholar
  8. 8.
    J Helms, J. Lightw. Technol. 10, 1901 (1992)ADSCrossRefGoogle Scholar
  9. 9.
    T B Warren and J Kouzoujian, Some notes on composite second and third order intermodulation distortions (Matrix Test Equipment, 2005) MTN-108Google Scholar
  10. 10.
    T E Darcie and G E Bodeep, IEEE Trans. Microw. Theory Technol. 38, 524 (1990)CrossRefGoogle Scholar
  11. 11.
    H T Lin and Y H Kao, IEEE J. Lightwave Technol. 14, 2567 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    H B Neo, Analysis of relative intensity noise and simulation of vertical-cavity surface-emitting lasers, Ph.D. thesis (University of Queensland, 2001)Google Scholar
  13. 13.
    W Y Lin, C H Chang, P C Peng, H H Lu and C H Huang, Opt. Express 18, 10301 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    J Chiddix, H Laor, D M Pangrac, L D Williamson and R W Wolfe, IEEE J. Sel. Areas Commun. 8, 1229 (1990)CrossRefGoogle Scholar
  15. 15.
    A Bakry and M Ahmed, Phys. Wave Phenom. 24, 1 (2016)CrossRefGoogle Scholar
  16. 16.
    E E Bergmann, C Y Kuo and S Y Huang, IEEE Photon. Technol. Lett. 3, 59 (1991)CrossRefGoogle Scholar
  17. 17.
    J Koscinski, Feasibility of multichannel VSB \(/\) AM transmission on fibre optic links (NCTA Technical Papers, 1986)Google Scholar
  18. 18.
    P J Corvini and T L Koch, J. Lightwave Technol. 5, 1591 (1987)ADSCrossRefGoogle Scholar
  19. 19.
    M Ahmed and A El-Lafi, Pramana – J. Phys. 71, 99 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    Y Y Kia and E Rajaei, Pramana – J. Phys. 89, 37 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    M Ahmed, M Yamada and M Saito, IEEE J. Quantum Electron. 37, 1600 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    K Petermann, Laser diode modulation and noise (Springer, The Netherlands, 1988) Vol. 3CrossRefGoogle Scholar
  23. 23.
    Intermodulation distortion (IMD) measurements using the 37300 series vector network analyzer, Anritsu, Application Note, 2000Google Scholar
  24. 24.
    T E Darcie and G E Bodeep, IEEE Intl. Conf. 2, 1004 (1989)Google Scholar
  25. 25.
    M Ahmed, Int. J. Num. Model. 17, 147 (2004)CrossRefGoogle Scholar
  26. 26.
    C H Cox III, Analog optical links theory practice (Cambridge University Press, New York, 2004)CrossRefzbMATHGoogle Scholar
  27. 27.
    H H Lu, Fibre broadband network systems (National Taipei University of Technology, Taiwan, 2010)Google Scholar
  28. 28.
    C J McGrath, NCTA Technical Papers 232 (1989)Google Scholar
  29. 29.
    D Dobrev and L Jordanova, Opt. Fibre Technol. 12, 196 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    RF and microwave fibre -optic design guide, Agere Systems Inc., Application Note AP01-006OPTO (2011)Google Scholar
  31. 31.
    R L Burden, J D Faires and A C Reynolds, Numerical analysis 2nd edn (Prindle, Weber and Schmidt, Boston, 1981)Google Scholar
  32. 32.
    J C Cartledge and R C Srinivasan, J. Lightwave Technol. 15, 852 (1997)ADSCrossRefGoogle Scholar
  33. 33.
    H H Lu, C H Chang and P C Peng, Frontiers in guided wave optics and optoelectronics (INTECH Open Access Publisher, Taiwan, 2010) Chapter 28Google Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • Alaa Mahmoud
    • 1
  • Moustafa Ahmed
    • 2
  • Safwat W Z Mahmoud
    • 2
  1. 1.Laser Institute for Research and Applications (LIRA)Beni-Suef UniversityBeni-SuefEgypt
  2. 2.Department of Physics, Faculty of ScienceMinia UniversityMiniaEgypt

Personalised recommendations