, 90:58 | Cite as

Envisaging quantum transport phenomenon in a muddled base pair of DNA

  • Rajan Vohra
  • Ravinder Singh Sawhney


The effect of muddled base pair on electron transfer through a deoxyribonucleic acid (DNA) molecule connected to the gold electrodes has been elucidated using tight binding model. The effect of hydrogen and nitrogen bonds on the resistance of the base pair has been minutely observed. Using the semiempirical extended Huckel approach within NEGF regime, we have determined the current and conductance vs. bias voltage for disordered base pairs of DNA made of thymine (T) and adenine (A). The asymmetrical behaviour amid five times depreciation in the current characteristics has been observed for deviated Au–AT base pair–Au devices. An interesting revelation is that the conductance of the intrinsic AT base pair configuration attains dramatically high values with the symmetrical zig-zag pattern of current, which clearly indicates the transformation of the bond length within the strands of base pair when compared with other samples. A thorough investigation of the transmission coefficients T(E) and HOMO–LUMO gap reveals the misalignment of the strands in base pairs of DNA. The observed results present an insight to extend this work to build biosensing devices to predict the abnormality with the DNA.


Charge transfer DNA EHT quantum transport scattering of atoms 


34.70.+e 34.50.−s 05.60.Gg 31.15.Ct 87.14.gk 


  1. 1.
    G B Schuster (Ed.), Long-range charge transfer in DNA (Springer-Verlag, Berlin, 2004)Google Scholar
  2. 2.
    T Chakraborty (Ed.), Charge migration in DNA, in: Perspectives from physics, chemistry, and biology (Springer, New York, 2007)Google Scholar
  3. 3.
    J C Genereux and J K Barton, Chem. Rev. 110, 1642 (2010)CrossRefGoogle Scholar
  4. 4.
    S Loft and H E Poulsen, J. Mol. Med. 74, 297 (1996)CrossRefGoogle Scholar
  5. 5.
    T Brown, Aldrichimica Acta 28, 15 (1995)MathSciNetGoogle Scholar
  6. 6.
    C-T Shih, S Roche and R A Römer, Phys. Rev. Lett. 100, 018105 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    K A Schallhorn, K O Freedman, J M Moore, J Lin and P C Ke, Appl. Phys. Lett. 87, 033901 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    A Okada, S Yokojima, N Kurita, Y Sengoku and S Tanaka, J. Mol. Struc. 630, 283 (2003)CrossRefGoogle Scholar
  9. 9.
    N Edirisinghe, V Apalkov, J Berashevich and T Chakraborty, Nanotechnology 21, 245101 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    V Apalkov, J Berashevich and T Chakraborty, J. Chem. Phys. 132, 085102 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    J Berashevich and T Chakraborty, J. Chem. Phys. 130, 015101 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    Y Zhang, Y Lu, J Hu, X Kong, B Li, G Zhao and M Li, Surf. Interface Anal. 33, 122 (2002)CrossRefGoogle Scholar
  13. 13.
    N Tian, Y Tang, Q-H Xu and S Wang, Macromol. Rapid Commun. 28, 729 (2007)CrossRefGoogle Scholar
  14. 14.
    F Fixe, V Chu, D M F Prazeres and J P Conde, Biosens. Bioelectr. 21, 888 (2005)CrossRefGoogle Scholar
  15. 15.
    G Marr and P Schar, Biochem. J. 338, 1 (1999)CrossRefGoogle Scholar
  16. 16.
    B Giese, J Amaudrut, A Köhler, M Spormann and S Wessely, Nature 412, 318 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    D Porath, A Bezryadin, S de Vries and C Dekker, Nature 403, 635 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    X-Q Li and Y Yan, Appl. Phys. Lett. 79, 2190 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    G Cuniberti, L Craco, D Porath and C Dekker, Phys. Rev. B 65, 241314R (2002)ADSCrossRefGoogle Scholar
  20. 20.
    X F Wang and T Chakraborty, Phys. Rev. B 74, 193103 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    X-F Wang et al, Quantum transport anomalies in DNA containing mispairs, arXiv:1202.1849 [cond-mat.mes-hall] 8 Feb. (2012)
  22. 22. Scholar
  23. 23.
    W R Frensley, Quantum transport (Academic Press, San Diego, 1994) Chapter 2CrossRefGoogle Scholar
  24. 24.
    K Stokbro, J. Phys.: Condens. Matter 20, 064216 (2008)Google Scholar
  25. 25.
    Atomistix Tool Kit Manual Version 13.8.0 (Copyright QuantumWise 2008–2016)Google Scholar
  26. 26.
    M Kaur, R S Sawhney and D Engles, J. Mater. Res. 31, 2025 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    T Yelin, R Vardimon, N Kuritz, R Korytár, A Bagrets, F Evers, L Kronik and O Tal, Nano Lett. 13, 1956 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    M Kaur, R S Sawhney and D Engles, Quantum Matter 4, 182 (2015)CrossRefGoogle Scholar
  29. 29.
    S Datta, Superlattices Microstructures 28(4), 253 (2000)ADSCrossRefGoogle Scholar
  30. 30.
    Mohr et al, Rev. Mod. Phys. 84(4), 1527 (2012).Google Scholar
  31. 31.
    R E Holmlin, R Haag, M L Chabinyc, R F Ismagilov, A E Cohen, A Terfort, M A Rampi and G M Whitesides, J. Am. Chem. Soc. 124(29), 8762 (2002)CrossRefGoogle Scholar
  32. 32.
    M Büttiker, Y Imry, R Landauer and S Pinhas, Phys. Rev. B 31, 6207 (1985)ADSCrossRefGoogle Scholar
  33. 33.
    Y Oshima, Surf. Sci. 531, 209 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    Y Bhat, R Vohra, M Kaur and R S Sawhney J. Comput. Theor. Nanosci. 14, 4137 (2017)CrossRefGoogle Scholar
  35. 35.
    R Kaur, R S Sawhney and D Engles, Pramana – J. Phys. 88, 78 (2017)Google Scholar
  36. 36.
    R Vohra and R S Sawhney, Sensor Lett. 15(11), 924 (2017)CrossRefGoogle Scholar
  37. 37.
    R Vohra, Y Bhat, M Kaur and R S Sawhney J. Bionanosci. 11(5), 363 (2017)CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Guru Nanak Dev UniversityAmritsarIndia

Personalised recommendations