Pramana

, 90:52 | Cite as

A chaotic jerk system with non-hyperbolic equilibrium: Dynamics, effect of time delay and circuit realisation

  • Karthikeyan Rajagopal
  • Viet-Thanh Pham
  • Fadhil Rahma Tahir
  • Akif Akgul
  • Hamid Reza Abdolmohammadi
  • Sajad Jafari
Article
  • 65 Downloads

Abstract

The literature on chaos has highlighted several chaotic systems with special features. In this work, a novel chaotic jerk system with non-hyperbolic equilibrium is proposed. The dynamics of this new system is revealed through equilibrium analysis, phase portrait, bifurcation diagram and Lyapunov exponents. In addition, we investigate the time-delay effects on the proposed system. Realisation of such a system is presented to verify its feasibility.

Keywords

Chaos jerk system equilibrium time delay circuit 

PACS Nos

05.45.Ac 02.30.Ks 

References

  1. 1.
    S H Strogatz, Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering  (Westview Press, 2014)Google Scholar
  2. 2.
    A T Azar, S Vaidyanathan and A DeMarco, Handbook of research on advanced intelligent control engineering and automation (Engineering Science Reference, 2015)Google Scholar
  3. 3.
    E N Lorenz, J. Atmos. Sci. 20(2), 130 (1963)ADSCrossRefGoogle Scholar
  4. 4.
    O E Rössler, Phys. Lett. A 57(5), 397 (1976)ADSCrossRefGoogle Scholar
  5. 5.
    G Chen and T Ueta, Int. J. Bifurc. Chaos 9(07), 1465 (1999)CrossRefGoogle Scholar
  6. 6.
    J C Sprott, Elegant chaos: Algebraically simple chaotic flows (World Scientific, 2010)Google Scholar
  7. 7.
    R Wu and C Wang, Int. J. Bifurc. Chaos 26(09), 1650145 (2016)CrossRefGoogle Scholar
  8. 8.
    S Yu, W K Tang, J Lü and G Chen, Int. J. Bifurc. Chaos 20(01), 29 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    J Ma, X Wu, R Chu and L Zhang, Nonlinear Dynam. 76(4), 1951 (2014)CrossRefGoogle Scholar
  10. 10.
    E Tlelo-Cuautle, J Rangel-Magdaleno, A Pano-Azucena, P Obeso-Rodelo and J Nunez-Perez, Commun. Nonlinear. Sci. 27(1), 66 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    S Jafari, V-T Pham and T Kapitaniak, Int. J. Bifurc. Chaos 26(02), 1650031 (2016)CrossRefGoogle Scholar
  12. 12.
    J Kengne, Z Njitacke and H Fotsin, Nonlinear Dynam. 83(1–2), 751 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Q Lai and S Chen, Int. J. Bifurc. Chaos 26(11), 1650177 (2016)CrossRefGoogle Scholar
  14. 14.
    J Kengne, A N Negou and D Tchiotsop, Nonlinear Dynam. 88(4), 2589 (2017)CrossRefGoogle Scholar
  15. 15.
    B Bao, T Jiang, Q Xu, M Chen, H Wu and Y Hu, Nonlinear Dynam. 86(3), 1711 (2016)CrossRefGoogle Scholar
  16. 16.
    B-C Bao, Q Xu, H Bao and M Chen, Electron. Lett. 52(12), 1008 (2016)CrossRefGoogle Scholar
  17. 17.
    B Bao, H Bao, N Wang, M Chen and Q Xu, Chaos Solitons Fractals 94, 102 (2017)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    B Bao, T Jiang, G Wang, P Jin, H Bao and M Chen, Nonlinear Dynam. 89(2), 1157 (2017)CrossRefGoogle Scholar
  19. 19.
    J C Sprott, S Jafari, A J M Khalaf and T Kapitaniak, Euro. Phys. J. Special Topics 226(9), 1979 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    P R Sharma, M D Shrimali, A Prasad, N Kuznetsov and G Leonov, Int. J. Bifurc. Chaos 25(04), 1550061 (2015)CrossRefGoogle Scholar
  21. 21.
    M-F Danca and N Kuznetsov, Chaos Solitons Fractals 103, 144 (2017)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    M-F Danca, N Kuznetsov and G Chen, Nonlinear Dynam. 88(1), 791 (2017)MathSciNetCrossRefGoogle Scholar
  23. 23.
    N Kuznetsov, G Leonov, M Yuldashev and R Yuldashev, Commun. Nonlinear Sci. 51, 39 (2017)CrossRefGoogle Scholar
  24. 24.
    D Dudkowski, S Jafari, T Kapitaniak, N V Kuznetsov, G A Leonov and A Prasad, Phys. Rep. 637, 1 (2016)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Y Feng and W Pan, Pramana – J. Phys. 88(4), 62 (2017)Google Scholar
  26. 26.
    W Pan and L Li, Pramana – J. Phys. 88(6), 87 (2017)Google Scholar
  27. 27.
    K Rajagopal, A Akgul, S Jafari, A Karthikeyan and I Koyuncu, Chaos Solitons Fractals 103, 476 (2017)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    E Tlelo-Cuautle, L G de la Fraga, V-T Pham, C Volos, S Jafari and A de Jesus Quintas-Valles, Nonlinear Dynam. 89(2), 1129 (2017)CrossRefGoogle Scholar
  29. 29.
    V-T Pham, X Wang, S Jafari, C Volos and T Kapitaniak, Int. J. Bifurc. Chaos 27(06), 1750097 (2017)CrossRefGoogle Scholar
  30. 30.
    V-T Pham, S Jafari, C Volos and T Kapitaniak, Int. J. Bifurc. Chaos 27(09), 1750138 (2017)CrossRefGoogle Scholar
  31. 31.
    V-T Pham, C Volos, S Jafari and T Kapitaniak, Nonlinear Dynam. 87(3), 2001 (2017)CrossRefGoogle Scholar
  32. 32.
    V-T Pham, S T Kingni, C Volos, S Jafari and T Kapitaniak, AEU – Int. J. Electron. C 78, 220 (2017)CrossRefGoogle Scholar
  33. 33.
    V-T Pham, S Jafari, T Kapitaniak, C Volos and S T Kingni, Int. J. Bifurc. Chaos 27(04), 1750053 (2017)CrossRefGoogle Scholar
  34. 34.
    S Jafari and J C Sprott, Chaos Solitons Fractals 57, 79 (2013)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    S Jafari, J C Sprott and M Molaie, Int. J. Bifurc. Chaos 26(06), 1650098 (2016)CrossRefGoogle Scholar
  36. 36.
    V-T Pham, S Jafari, C Volos, T Gotthans, X Wang and D V Hoang, Optik 130, 365 (2017)ADSCrossRefGoogle Scholar
  37. 37.
    V-T Pham, S Jafari and C Volos, Optik 131, 343 (2017)ADSCrossRefGoogle Scholar
  38. 38.
    V-T Pham, C Volos, T Kapitaniak, S Jafari and X Wang, Int. J. Electron. 105(3), 305 (2018)Google Scholar
  39. 39.
    S Jafari, J C Sprott, V-T Pham, C Volos and C Li, Nonlinear Dynam. 86(2), 1349 (2016)CrossRefGoogle Scholar
  40. 40.
    C Shen, S Yu, J Lü and G Chen, IEEE T. Circuits-I: Regular Papers 61(8), 2380 (2014)Google Scholar
  41. 41.
    M F Tolba, A M AbdelAty, N S Soliman, L A Said, A H Madian, A T Azar and A G Radwan, AEU – Int. J. Electron. C 78, 162 (2017)CrossRefGoogle Scholar
  42. 42.
    C Li, K Su and J Zhang, Appl. Math. Model. 39(18), 5392 (2015)MathSciNetCrossRefGoogle Scholar
  43. 43.
    L Šil’Nikov, Math. USSR-Sb.10(1), 91 (1970)Google Scholar
  44. 44.
    B Chen, T Zhou and G Chen, Int. J. Bifurc. Chaos 19(05), 1679 (2009)CrossRefGoogle Scholar
  45. 45.
    Z Wei, J Sprott and H Chen, Phys. Lett. A 379(37), 2184 (2015)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    Z Wei, W Zhang and M Yao, Nonlinear Dynam. 82(3), 1251 (2015)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Z Wei, Phys. Lett. A 376(2), 102 (2011)ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    X Wang and G Chen, Commun. Nonlinear. Sci. 17(3), 1264 (2012)MathSciNetCrossRefGoogle Scholar
  49. 49.
    J Sprott, Am. J. Phys. 65(6), 537 (1997)ADSCrossRefGoogle Scholar
  50. 50.
    J Sprott, Phys. Lett. A 228(4–5), 271 (1997)ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    G A Leonov and N V Kuznetsov, Int. J. Bifurc. Chaos 17(04), 1079 (2007)CrossRefGoogle Scholar
  52. 52.
    N Kuznetsov, T Alexeeva and G Leonov, arXiv:1410.2016 (2014)
  53. 53.
    N Kuznetsov, T Mokaev and P Vasilyev, Commun. Nonlinear. Sci. 19(4), 1027 (2014)MathSciNetCrossRefGoogle Scholar
  54. 54.
    N Kuznetsov, Phys. Lett. A 380(25), 2142 (2016)ADSMathSciNetCrossRefGoogle Scholar
  55. 55.
    A Wolf, J B Swift, H L Swinney and J A Vastano, Physica D 16(3), 285 (1985)ADSMathSciNetCrossRefGoogle Scholar
  56. 56.
    J K Hale and S M V Lunel, Introduction to functional differential equations (Springer Science & Business Media, 2013) Vol. 99Google Scholar
  57. 57.
    W Deng, Y Wu and C Li, Int. J. Bifurc. Chaos 16(02), 465 (2006)CrossRefGoogle Scholar
  58. 58.
    V-T Pham, S Vaidyanathan, C Volos, S Jafari, N Kuznetsov and T Hoang, Euro. Phys. J. Special Topic 225(1), 127 (2016)ADSCrossRefGoogle Scholar
  59. 59.
    W Hu, D Ding, Y Zhang, N Wang and D Liang, Optik 130, 189 (2017)ADSCrossRefGoogle Scholar
  60. 60.
    Y Tang, M Cui, L Li, H Peng and X Guan, Chaos Solitons Fractals 41(4), 2097 (2009)ADSCrossRefGoogle Scholar
  61. 61.
    A Stefanski, A Dabrowski and T Kapitaniak, Chaos Solitons Fractals 23(5), 1651 (2005)ADSMathSciNetCrossRefGoogle Scholar
  62. 62.
    A Dabrowski, Nonlinear Dynam. 3(78), 1601 (2014)CrossRefGoogle Scholar
  63. 63.
    A Stefanski, T Kapitaniak and A Dabrowski, IUTAM Symp. Chaotic Dynam. (2005)Google Scholar
  64. 64.
    Y Lin, C Wang, H He and L L Zhou, Pramana – J. Phys. 86(4), 801 (2016)Google Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • Karthikeyan Rajagopal
    • 1
  • Viet-Thanh Pham
    • 2
  • Fadhil Rahma Tahir
    • 3
  • Akif Akgul
    • 4
  • Hamid Reza Abdolmohammadi
    • 5
  • Sajad Jafari
    • 6
  1. 1.Center for Nonlinear Dynamics, College of EngineeringDefence UniversityBishoftuEthiopia
  2. 2.Modeling Evolutionary Algorithms Simulation and Artificial Intelligence, Faculty of Electrical & Electronics EngineeringTon Duc Thang UniversityHo Chi Minh CityVietnam
  3. 3.Electrical Engineering DepartmentUniversity of BasrahBasraIraq
  4. 4.Department of Electrical and Electronic Engineering, Faculty of TechnologySakarya UniversityAdapazarıTurkey
  5. 5.Department of Electrical EngineeringGolpayegan University of TechnologyGolpayeganIran
  6. 6.Biomedical Engineering DepartmentAmirkabir University of TechnologyTehran Iran

Personalised recommendations