, 90:53 | Cite as

Novel patterning of CdS / CdTe thin film with back contacts for photovoltaic application

  • Murugaiya Sridar Ilango
  • Sheela K Ramasesha


The heterostructure of patterned CdS / CdTe thin films with back contact have been devised with electron beam lithography and fabricated using sputter deposition technique. The metallic contacts for n-CdS and p-CdTe are patterned such that both are placed at the bottom of the cell. This avoids losses due to contact shading and increases absorption in the window layer. Patterning of the device surface helps in increasing the junction area which can modulate the absorption of more number of photons due to total internal reflection. Computing the surface area between a planar and a patterned device has revealed 133% increase in the junction area. The physical and optical properties of the sputter-deposited CdS / CdTe layers are also presented. JV characteristics of the solar cell showed the fill factor to be 25.9%, open circuit voltage to be 17 mV and short-circuit current density to be \(113.68~\hbox {A}/\hbox {m}^{2}\). The increase in surface area is directly related to the increase in the short circuit current of the photovoltaic cell, which is observed from the results of simulated model in Atlas / Silvaco.


Patterning of solar cell thin film back contact e-beam lithography 


68.55.–a 85.40.Hp 



The authors thank the Department of Science and Technology for funding the project. The modelling / simulations were performed using Atlas / Silvaco.


  1. 1.
    K X Wang, Z Yu, V Liu, Y Cui and S Fan, Nano Lett. 12, 1616 (2012),
  2. 2.
    L Ji and V V Varadan, Proc. SPIE 9434, Nanosensors, Biosensors, and Info-Tech Sensors and Systems 2015, 94340I (2015),
  3. 3.
    G Mariani, Z Zhou, A Scofield and D L Huffaker, Nano Lett. 13, 1632 (2013),
  4. 4.
    P Oelhafen and A Schüler, Solar Energy 79, 110 (2005),
  5. 5.
    E Pelayo, A Zazueta, R Lopez, E Saucedo, R Ruelas and A Ayon, Mater. Renew. Sustain. Energy 5, 5 (2016),
  6. 6.
    J D Beach and B E McCandless, MRS Bull. 32, 225 (2007),
  7. 7.
    A K Srivastava, R S Singh, K E Sampson, V P Singh and R V Ramanujan, Metall. Mater. Trans. A: Phys. Metall. Mater. Sci. 38, 717 (2007),
  8. 8.
    Christiana B Honsberg, Allen M Barnett and Douglas Kirkpatrick, IEEE 4th World Conference on Photovoltaic Energy Conference (2006) pp. 2565–2568,
  9. 9.
    X X Lin, X Hua, Z G Huang and W Z Shen, Nanotechnol. 24, 235402 (2013),
  10. 10.
    S Rondiya et al, Mater. Renew. Sustain. Energy 6, 8 (2017),
  11. 11.
    C R Bukowsky, J Grandidier, K T Fountaine, D M Callahan, B J Stanbery and H A Atwater, Sol. Energy Mater. Sol. Cells 161, 149 (2017),
  12. 12.
    J Krc et al, Thin Solid Films 426, 296 (2003),
  13. 13.
    P Lechner, R Geyer, H Schade, B Rech, O Kluth and H Stiebig, Proceeding of the 19th European Photovoltaic Solar Energy Conference (Paris, France, 2004) pp. 1591–1594Google Scholar
  14. 14.
    G Jost, T Merdzhanova, T Zimmermann, J Kirchhoff and J Hüpkes, 27th European Photovoltaic Solar Energy Conference and Exhibition (2012) pp. 2543–2547Google Scholar
  15. 15.
    N Amin, T Isaka, A Yamada and M Konagai, Sol. Energy Mater. Sol. Cells 67, 195 (2001),
  16. 16.
    A A Tseng, K Chen, C D Chen and K J Ma, IEEE Trans. Electron. Packag. Manuf. 26, 141 (2003),
  17. 17.
    R Ikeno, S Maruyama, Y Mita, M Ikeda and K Asada, J. Micro/Nanolithography, MEMS, MOEMS. 15, 31606 (2016),
  18. 18.
    H Sai, H Fujiwara and M Kondo, Sol. Energy Mater. Sol. Cells 93, 1087 (2009),
  19. 19.
    Z Fan et al, Nat. Mater. 8, 648 (2009),
  20. 20.
    E Van Kerschaver and G Beaucarne, Prog. Photovoltaics Res. Appl. 14, 107 (2006),
  21. 21.
    R H Dean, L S Napoli and S G Liu, RCA Rev. 36, 324 (1975)ADSGoogle Scholar
  22. 22.
    M S Ilango, V Monterio and S K Ramasesha, Bull. Mater. Sci. 38, 191 (2015),
  23. 23.
    C Barugkin, U W Paetzold, K R Catchpole, A Basch and R Carius, Int. J. Photoenergy 2016, 1 (2016),
  24. 24.
    K N Nithyayini and S K Ramasesha, Metall. Mater. Trans. E 2, 157 (2015),
  25. 25.
    L Gouda, Y R Aniruddha and S K Ramasesha, J. Mod. Phys. 3, 1870 (2012),
  26. 26.
    P H Drive, ATLAS User’s Manual (2006) pp. 567–1000Google Scholar
  27. 27.
    N R Paudel, K A Wieland and A D Compaan, MRS Proc. 1323 (2011),
  28. 28.
    J Tauc and A Menth, J. Non. Cryst. Solids 8–10, 569 (1972),
  29. 29.
    T Yamada, K Miura, M Kajihara, N Kurokawa and K Sakamoto, Mater. Sci. Engng A 390, 118 (2004),
  30. 30.
    N Amin, K Sopian and M Konagai, Sol. Energy Mater. Sol. Cells 91, 1202 (2007),

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Divecha Centre for Climate ChangeIndian Institute of ScienceBengaluruIndia
  2. 2.Department of PhysicsJain UniversityBengaluruIndia
  3. 3.Energy and Environment Research ProgramNational Institute of Advanced Studies, IISc CampusBengaluruIndia

Personalised recommendations