Skip to main content
Log in

Development of a collinear laser spectrometer facility at VECC: First test result

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We report here the development of collinear laser spectroscopy (CLS) system at VECC for the study of hyperfine spectrum and isotopic shift of stable and unstable isotopes. The facility is first of its kind in the country allowing measurement of hyperfine splitting of atomic levels using atomic beams. The CLS system is installed downstream of the focal plane of the existing isotope separator online (ISOL) facility at VECC and is recently commissioned by successfully resolving the fluorescence spectrum of the hyperfine levels in \(^{85,87}\)Rb. The atomic beams of Rb were produced by charge exchange of 8 keV Rb ion beam which were produced, extracted and transported to the charge exchange cell using the ion sources, extractor and the beam-line magnets of the ISOL facility. The laser propagating opposite to the ion / atom beam direction was allowed to interact with the atom beam and fluorescence spectrum was recorded. The experimental set-up and the experiment conducted are reported in detail. The measures needed to be carried out for improving the sensitivity to a level necessary for studying short-lived exotic nuclei have also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W Demtroeder, Laserspektroskopie (Springer Verlag, Berlin, 1993)

    Book  Google Scholar 

  2. S L Kaufman, Opt. Commun. 17, 309 (1976)

    Article  ADS  Google Scholar 

  3. W H Wing, G A Ruff, W E Lamb and J J Spezeski, Phys. Rev. Lett. 36, 1488 (1976)

    Article  ADS  Google Scholar 

  4. K-R Anton, S L Kaufman, W Klempt, G Moruzzi and R Neugart, Phys. Rev. Lett. 40, 642 (1978)

    Article  ADS  Google Scholar 

  5. Treatise on heavy ion science edited by D A Bromley (Plenum Press, 1989) Ch. 7, p. 517

  6. R Neugart, Nucl. Inst. Meas. 186, 165 (1981)

    ADS  Google Scholar 

  7. H-J Kluge and W Nörtershäuser, Spectrochim. Acta B 58, 1031 (2003)

    Article  ADS  Google Scholar 

  8. B Cheal and K T Flanagan, J. Phys. G 37, 113101 (2010)

    Article  ADS  Google Scholar 

  9. K P Marinova, Phys. Part. Nucl. 35, 693 (2004)

    Google Scholar 

  10. P Campbell, I D Mooreb and M R Pearson, Prog. Part. Nucl. Phys. 86, 127 (2016)

    Article  ADS  Google Scholar 

  11. A Bandyopadhyay, V Naik, D Bhattacharyya, S De Chowdhury, S K Nayak, M Mandal, S Chattopadhyay, A Polly and A Chakrabarti, Nucl. Insrum. Methods A 562, 41 (2006)

    Article  ADS  Google Scholar 

  12. J Papuga, M L Bissell, K Kreim, C Barbieri, K Blaum, M De Rydt, T Duguet, , H Heylen, M Kowalska, R Neugart, G Neyens, W Nörtershäuser, M M Rajabali, R Sánchez, N Smirnova, V Somà and D T Yordanov, Phys. Rev. C 90, 034321 (2014)

    Article  ADS  Google Scholar 

  13. V Naik, A Chakrabarti, M Bhattacharjee, P Karmakar, A Bandyopadhyay, S Bhattacharjee, S Dechoudhury, M Mondal, H K Pandey, D Lavanyakumar, T K Mandi, D. P Dutta, T Kundu Roy, D Bhowmick, D Sanyal, S C L Srivastava, A Ray and Md S Ali, Rev. Sci. Instrum. 84, 033301 (2013)

    Article  ADS  Google Scholar 

  14. Vaishali Naik, Alok Chakrabarti, Mahuwa Bhattacharjee, Prasanta Karmakar, Sampa Bhattacharjee, Arup Bandyopadhyay, Siddhartha Dechoudhury, Dodi Lavanya Kumar, Manas Mondal, H K Pandey, T K Mandi, D P Dutta, Tapatee Kundu Roy, Debasis Bhowmik, Dirtha Sanyal, Ayan Ray, Md Sabir Ali, S C L Srivastava and P Y Nabhiraj, Nucl. Instrum. Methods B 317, 227 (2013)

    Article  ADS  Google Scholar 

  15. U Rohrer, PSI graphic transport framework, based on a CERN-SLAC-FERMILAB version by K L Brown et al, 2006

  16. M Bacal and W Reichelt, Rev. Sci. Instrum. 45, 769 (1974)

    Article  ADS  Google Scholar 

  17. A Klose, K Minamisono, Ch Geppert, N Frömmgenc, M Hammenc, J Kramer, A Krieger, C D P Levy, P F Mantica, W Nörtershäuser and S Vinnikova, Nucl. Instrum. Methods B 678, 114 (2012)

    Article  Google Scholar 

  18. Waseem Raja, Md Sabir Ali, Alok Chakrabarti and Ayan Ray, Appl. Phys. B 123, 202 (2017), https://doi.org/10.1007/s00340-017-6778-8

    Article  ADS  Google Scholar 

  19. J F Sell, K Gulyuz and G D Sprouse, Rev. Sci. Instrum. 80, 123108 (2009)

    Article  ADS  Google Scholar 

  20. http://steck.us/alkalidata/rubidium85numbers.pdf

  21. J Perel, R H Vernon and H L Daley, Phys. Rev. A 138, 937 (1965)

    Article  ADS  Google Scholar 

  22. S Vinnikova, Development and commissioning of a photon detection system for collinear laser spectroscopy at NSCL, Masters Thesis (Michigan State University, 2011)

  23. A Voss, M R Pearson, J Billowes, F Buchinger, B Cheal, J E Crawford, A A Kwiatkowski, C D Philip Levy and O Shelbaya, Phys. Rev. Lett. 111, 122501 (2013)

    Article  ADS  Google Scholar 

  24. J Krämer, Construction and commissioning of a collinear laser spectroscopy set-up at TRIGA Mainz, Ph.D. thesis (Johannes Gutenberg-Universität Mainz, 2010)

  25. http://www.thinksrs.com/downloads/PDFs/Manuals/SR400m.pdf

  26. A Chakrabarti, A Bandyopadhyay, V Naik, S Dechoudhury, M Mondal and P Y Nabhiraj, Nucl. Instrum. Methods B 317, 253 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Sabir Ali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, M.S., Ray, A., Raja, W. et al. Development of a collinear laser spectrometer facility at VECC: First test result. Pramana - J Phys 90, 47 (2018). https://doi.org/10.1007/s12043-018-1538-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-018-1538-9

Keywords

PACS Nos

Navigation