Advertisement

Pramana

, 90:48 | Cite as

Volterra integral equation-factorisation method and nucleus–nucleus elastic scattering

  • U Laha
  • M Majumder
  • J Bhoi
Article

Abstract

An approximate solution for the nuclear Hulthén plus atomic Hulthén potentials is constructed by solving the associated Volterra integral equation by series substitution method. Within the framework of supersymmetry-inspired factorisation method, this solution is exploited to construct higher partial wave interactions. The merit of our approach is examined by computing elastic scattering phases of the \(\alpha {-}\alpha \) system by the judicious use of phase function method. Reasonable agreements in phase shifts are obtained with standard data.

Keywords

Volterra integral equation nuclear plus atomic Hulthén potentials supersymmetry-inspired factorisation method phase function method \(\alpha {-}\alpha \) elastic scattering phases 

PACS Nos

02.30.Rz 21.30.Fe 11.30.Pb 13.85.Dz 

References

  1. 1.
    G Arfken, Mathematical method for physicists (Academic Press Inc., New York, 1985)zbMATHGoogle Scholar
  2. 2.
    T A Tombrello and L S Senhouse, Phys. Rev. 129, 2252 (1963)ADSCrossRefGoogle Scholar
  3. 3.
    S Ali and A R Bodmer, Nucl. Phys. 80, 99 (1966)CrossRefGoogle Scholar
  4. 4.
    S A Afzal, A A Z Ahmad and S Ali, Rev. Mod. Phys. 41, 247 (1969); L Marquez, Phys. Rev. C 28, 2525 (1983)Google Scholar
  5. 5.
    P R Page, Phys. Rev. C 72, 054312 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    S Elhatisari, D Lee, G Rupak, E Epelbaum, H Krebs, T A Lähde, T Luu and Ulf-G Meißner, Nature 528, 111 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    C H Humphrey, Bull. Am. Phys. Soc. 2, 72 (1957)Google Scholar
  8. 8.
    R Nilson, W K Jentschke, G R Briggs, R O Kerman and J N Snyder, Phys. Rev. 109, 850 (1958)ADSCrossRefGoogle Scholar
  9. 9.
    O Endo, I Shimodaya and J Hiura, Prog. Theor. Phys. (Kyoto) 31, 1157 (1964)ADSCrossRefGoogle Scholar
  10. 10.
    U Laha, N Haque, T Nandi and G C Sett, Z. Phys. A: At. Nucl. 332, 305 (1989)ADSGoogle Scholar
  11. 11.
    V I Kukulin, V G Neudatchin and Yu F Smirnov, Nucl. Phys. A 245, 429 (1975)ADSCrossRefGoogle Scholar
  12. 12.
    H Friedrich, Phys. Rep. 74, 209 (1981); Phys. Rev. C 30, 1102 (1984)Google Scholar
  13. 13.
    G Igo, Phys. Rev. 117, 1079 (1960)ADSCrossRefGoogle Scholar
  14. 14.
    L G Arnold and A D MacKellar, Phys. Rev. C 3, 1095 (1971)ADSCrossRefGoogle Scholar
  15. 15.
    U Laha and J Bhoi, Pramana – J. Phys. 84, 555 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    U Laha and J Bhoi, Phys. Rev. C 91, 034614 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    J Bhoi and U Laha, Phys. At. Nucl. 79, 210 (2016)CrossRefGoogle Scholar
  18. 18.
    J Bhoi and U Laha, Braz. J. Phys. 46, 129 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    S Flügge, Practical quantum mechanics (Springer, Berlin, 1979)zbMATHGoogle Scholar
  20. 20.
    F Calogero, Variable phase approach to potential scattering (Academic, New York, 1967)zbMATHGoogle Scholar
  21. 21.
    C V Sukumar, J. Phys. A: Math. Gen. 18, L57 (1985)ADSCrossRefGoogle Scholar
  22. 22.
    F Cooper and B Freedman, Ann. Phys. NY 146, 262 (1983)ADSCrossRefGoogle Scholar
  23. 23.
    U Laha, C Bhattacharyya, K Roy and B Talukdar, Phys. Rev. C 38, 558 (1988)ADSCrossRefGoogle Scholar
  24. 24.
    U Laha and J Bhoi, Pramana – J. Phys. 81, 959 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    J Bhoi and U Laha, J. Phys. G: Nucl. Part 40, 045107 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    D Baye, Phys. Rev. Lett. 58, 2738 (1987)ADSCrossRefGoogle Scholar
  27. 27.
    A Khare and U Sukhatme, J. Phys. A: Math. Gen. 22, 2847 (1989)ADSCrossRefGoogle Scholar
  28. 28.
    B Talukdar, U Das, C Bhattacharyya and P K Bera, J. Phys. A: Math. Gen. 25, 4073 (1992)ADSCrossRefGoogle Scholar
  29. 29.
    A W Babister, Transcendental functions satisfying non-homogeneous linear- differential equations (MacMillan, New York, 1967)zbMATHGoogle Scholar
  30. 30.
    T D Imbo and U P Sukhatme, Phys Rev. Lett. 54, 2184 (1985)ADSCrossRefGoogle Scholar
  31. 31.
    P E Hodgson, Nuclear heavy ion reactions (Clarendon, Oxford, 1978)Google Scholar
  32. 32.
    F Michel and G Reidemeister, J. Phys. G: Nucl. Phys. 11, 835 (1985)ADSCrossRefGoogle Scholar
  33. 33.
    J Bhoi and U Laha, Pramana – J. Phys. 88, 42 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Department of PhysicsNational Institute of TechnologyJamshedpur India
  2. 2.Department of PhysicsGovernment College of EngineeringKalahandi India

Personalised recommendations