, 90:44 | Cite as

Role of hydrothermal temperature on crystallinity, photoluminescence, photocatalytic and gas sensing properties of \(\hbox {TiO}_{2}\) nanoparticles

  • M Malligavathy
  • S Iyyapushpam
  • S T Nishanthi
  • D Pathinettam Padiyan


\(\hbox {TiO}_{2}\) nanoparticles were synthesised by hydrothermal method. The degree of crystallinity and phase purity were confirmed from the Raman spectra and X-ray diffraction. By increasing the hydrothermal temperature, crystallinity and AC conductivity of the \(\hbox {TiO}_{2}\) nanoparticles increase. Nitrogen adsorption–desorption measurements confirmed that the samples were mesoporous with an average pore diameter of 4.4–7.45 nm. Photocatalytic activity of \(\hbox {TiO}_{2}\) nanoparticles was evaluated and the sample hydrothermally treated at \(160^{\circ }\hbox {C}\) has the highest photocatalytic activity. In gas sensing measurements, sensitivity increases as a function of concentration and the response to ethanol vapour was better compared to other gases for the sample synthesised at \(160^{\circ }\hbox {C}\).

Graphical abstract


Hydrothermal method structural properties photocatalytic degradation gas sensor 


68.37.Hk 68.37.Lp 68.55.−a 78.67.Bf 



One of the authors, M Malligavathy would like to thank UGC, New Delhi for BSR fellowship and the authors thank DST-FIST and UGC-SAP for the financial assistance to the Department of Physics, Manonmaniam Sundaranar University, Tirunelveli. The authors also thank SAIF, IIT Madras for recording HR-SEM & FT-Raman measurement and IIT, Mumbai for recording TEM measurement.


  1. 1.
    A Fujishima and K Honda, Nature 238, 37 (1972)ADSCrossRefGoogle Scholar
  2. 2.
    C Garzella, E Comini, E Tempesti, C Frigeri and G Sberveglieri, Sens. Actuators B 68, 189 (2000)CrossRefGoogle Scholar
  3. 3.
    M Anpo, Pure Appl. Chem. 72, 1265 (2000)CrossRefGoogle Scholar
  4. 4.
    Santhosh Singh and Madhvendra Nath Tripathi, Pramana – J. Phys. 89, 5 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    Haleh Kanganlou and Arash Abdollahi, Pramana – J. Phys. 86, 117 (2016), (2015)
  6. 6.
    R Azimirad and S Safa, Pramana – J. Phys. 86, 653 (2016), (2014)
  7. 7.
    L Gomathi Devi and R Kavitha, Appl. Surf. Sci. 360, 601 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    Di Li, Fen Chen, Deli Jiang, Weidong Shi and Wenjun Zheng, Appl. Surf. Sci. 390, 689 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    Jianxiang Low, Bei Cheng and Jiaguo Yu, Appl. Surf. Sci. 392, 658 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    Swagata Banerjee, Dionysios D Dionysiou and Suresh C Pillai, Appl. Catal. B: Environ. 176, 396 (2015)CrossRefGoogle Scholar
  11. 11.
    Ewelina Grabowska, Magdalena Diak, Martyna Marchelek and Adriana Zaleska, Appl. Catal. B: Environ. 156–157, 213 (2014)CrossRefGoogle Scholar
  12. 12.
    S Girish Kumar and K S R Koteswara Rao, Appl. Surf. Sci. 391, 124 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    Chimmikuttanda Ponnappa Sajan, Swelm Wageh, Ahmed A Al-Ghamdi, Jiaguo Yu and Shaowen Cao, Nano Res. 9, 3 (2016)CrossRefGoogle Scholar
  14. 14.
    Quanlong Xu, Jiaguo Yu, Jun Zhanga, Jinfeng Zhanga and Gang Liu, Chem. Commun. 51, 7950 (2015)CrossRefGoogle Scholar
  15. 15.
    Xinyi Zhang, Jianfeng Yao, Dan Li, Xiaodong Chen, Huanting Wang, Leslie Y Yeo and James R Friend, Mater. Res. Bull. 55, 13 (2014)CrossRefGoogle Scholar
  16. 16.
    A Charanpahari, S S Umare and R Sasikala, Appl. Surf. Sci. 282, 408 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    Huang Fengping, Wang Shuai, Zhang Shuang, Fan Yingge, Li Chunxue, Wang Chuang and Liu Chun, Bull. Korean Chem. Soc. 35, 2512 (2014)CrossRefGoogle Scholar
  18. 18.
    Yuanjie Su, Ya Yang, Hulin Zhang, Yannan Xie, Zhiming Wu, Yadong Jiang, Naoki Fukata, Yoshio Bando and Zhong Lin Wang, Nanotechnol. 24, 295401 (2013)CrossRefGoogle Scholar
  19. 19.
    Jingshuai Chen, Shiyue Qin, Yuande Liu, Feng Xin and Xiaohong Yin, Res. Chem. Intermed. 40, 637 (2014)CrossRefGoogle Scholar
  20. 20.
    M Malligavathy, S Iyyapushpam, S T Nishanthi and D Pathinettam Padiyan, J. Exp. Nanosci. 11, 1074 (2016)CrossRefGoogle Scholar
  21. 21.
    T Ohsaka, F Izumi and Y Fujiki, J. Raman Spectrosc. 7, 321 (1978)ADSCrossRefGoogle Scholar
  22. 22.
    X Wang, J Shen and Q Pan, J. Raman Spectrosc. 42, 1578 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    W Ma, Z Lu and M Zhang, Appl. Phys. A 66, 621 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    Qiang Liu, Dongyan Ding and Congqin Ning, Materials 7, 3262 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    Murat Akarsu, Meltem Asilturk, Funda Sayilkan, Nadir Kiraz, Ertugrul Arpac and Hikmet Sayilkan, Turkish J. Chem. 30, 333 (2006)Google Scholar
  26. 26.
    Manveen Kaur and N K Verma, J. Mater. Sci. Technol. 30, 328 (2014)CrossRefGoogle Scholar
  27. 27.
    Swapan K. Das, Manas K Bhunia and Asim Bhaumik, Dalton Trans. 39, 4382 (2010)CrossRefGoogle Scholar
  28. 28.
    H Tang, K Prasad, R Sanjines, P E Schimidd and F Levy, J. Appl. Phys. 75, 2042 (1994)ADSCrossRefGoogle Scholar
  29. 29.
    N Serpone, D Lawless and R Khairutdinov, J. Phys. Chem. 99, 16646 (1995)CrossRefGoogle Scholar
  30. 30.
    J G Yu, T T Ma and S W Liu, Phys. Chem. Chem. Phys. 13, 3491 (2011)CrossRefGoogle Scholar
  31. 31.
    Haizel G Roy, Int. J. Mater. Sci. Innov. 1, 142 (2013)Google Scholar
  32. 32.
    J G Yu, L Yue, S W Liu, B B Huang and X Y Zhang, J. Colloid Interface Sci. 334, 58 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    A Ramchiary and S Samdarshi, Chem. Phys. Lett. 597, 63 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    Y X Zhang, G H Li, Y X Jin, Y Zhang, J Zhang and L D Zhang, Chem. Phys. Lett. 365, 300 (2002)ADSCrossRefGoogle Scholar
  35. 35.
    T Sekiya, S Kamei and S Kurita, J. Lumin. 87, 1140 (2000)CrossRefGoogle Scholar
  36. 36.
    Batakrushna Santara and P K Giri, Mater. Chem. Phys. 137, 928 (2013)CrossRefGoogle Scholar
  37. 37.
    K P Priyanka, Sunny Joseph, Anu Tresa Sunny and Thomas Varghese, Nanosystems: Phys. Chem. Math. 4, 218 (2013)Google Scholar
  38. 38.
    F Rouquerol, J Rouquerol and K Singh, Adsorption by powders & porous solids: Principles, methodology and applications (Academic Press, San Diego, 1999)Google Scholar
  39. 39.
    S J Gregg and K S W Singh, Adsorption, surface area and porosity (Academic Press, London, 1982)Google Scholar
  40. 40.
    G C Collazzo, S L Jahn, N L V Carreno and E L Foletto, Braz. J. Chem. Eng. 28, 265 (2011)CrossRefGoogle Scholar
  41. 41.
    S Banerjee, J Gopal and P Muraleedharan, Curr. Sci. 90, 1378 (2006)Google Scholar
  42. 42.
    D Z Yu, R X Cai and Z H Liu, Spectrochem. Acta A 60, 1617 (2004)ADSCrossRefGoogle Scholar
  43. 43.
    T X Wu, G M Liu and J C Zhao, J. Phys. Chem. B 102, 5845 (1998)CrossRefGoogle Scholar
  44. 44.
    Y Ma and J N Yao, J. Photochem. Photobiol. A 116, 167 (1998)CrossRefGoogle Scholar
  45. 45.
    Danli, Jian-Feng Huang and Li-Yun Cao, Ceram. Int. 40, 2647 (2014)CrossRefGoogle Scholar
  46. 46.
    M Juan, L Jorge and H J Marie, Appl. Catal. B 18, 281 (1998)CrossRefGoogle Scholar
  47. 47.
    G Blanchard, M Maunaye and G Martin, Water Res. 18, 1501 (1984)CrossRefGoogle Scholar
  48. 48.
    You-Peng Chen, Shao-Yang Liu, Han-Qing Yu, Hao Yin and Qian-Rong Li, Chemosphere 72, 532 (2008)ADSCrossRefGoogle Scholar
  49. 49.
    W Li, C Liu, Y Zhou, Y Bai, X Feng, Z Yang, L Lu and K Y Chan, J. Phys. Chem. C 112, 20539 (2008)CrossRefGoogle Scholar
  50. 50.
    S Horikoshi, A Saitou, H Hidaka and N Serpone, Environ. Sci. Technol. 37, 5813 (2003)ADSCrossRefGoogle Scholar
  51. 51.
    J Krysa, M Keppert, J Jirkovsky, V Stengl and J Subrt, Mater. Chem. Phys. 86, 333 (2004)CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • M Malligavathy
    • 1
  • S Iyyapushpam
    • 2
  • S T Nishanthi
    • 3
  • D Pathinettam Padiyan
    • 1
  1. 1.Department of PhysicsManonmaniam Sundaranar UniversityTirunelveliIndia
  2. 2.Department of PhysicsThanthai Hans Roever Arts and Science CollegePerambalurIndia
  3. 3.Electrochemical Materials DivisionCentral Electro Chemical Research InstituteKaraikudiIndia

Personalised recommendations