Activation cross-section data for \(\alpha \)-particle-induced nuclear reactions on natural vanadium for practical applications

Abstract

Excitation functions for \(\alpha \)-induced reactions on natural vanadium were measured in the energy range up to 20 MeV. The stacked-foil activation technique was used. The experimental results were compared with the theoretical calculations using EMPIRE-3.1, EMPIRE-3.2.2 and TENDL 2015, and with earlier experimental results. Thick target yields were calculated for the production of \(^{54}\hbox {Mn}\) and for the associated impurity \(^{52}\hbox {Mn}\).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    A Lake Wooten, B C Lewis and S E Lapi, Appl. Radiat. Isot. 96, 154 (2015)

    Article  Google Scholar 

  2. 2.

    P E Johnson, G I Lykken and E D Korynta, J. Nutr. 121, 711 (1991)

    Article  Google Scholar 

  3. 3.

    A Takeda, S Ishwatorai and S Okada, Brain Res. 811, 147 (1998)

    Article  Google Scholar 

  4. 4.

    A Takeda, Brain Res. Rev. 41, 79 (2003)

    Article  Google Scholar 

  5. 5.

    M Klos, M Bartyzel and B Petelenz, Nukleonika 51, 221 (2006)

    Google Scholar 

  6. 6.

    M Al-Abyad, M N H Comsan and S M Qaim, Appl. Radiat. Isot. 67, 122 (2009)

    Article  Google Scholar 

  7. 7.

    M Al-Abyad, I Spahn and S M Qaim, Appl. Radiat. Isot. 68, 2393 (2010)

    Article  Google Scholar 

  8. 8.

    A Hermanne, R Adam Rebeles, F Tárkányi, S Takács, M Takács and A Ignatyuk, Nucl. Instrum. Methods B 269, 2563 (2011)

    ADS  Article  Google Scholar 

  9. 9.

    F Ditrói, F Tárkányi, S Takács, A Hermanne, H Yamazaki, M Baba, A Mohammadi and A V Ignatyuk, Nucl. Instrum. Methods B 269, 1878 (2011)

    ADS  Article  Google Scholar 

  10. 10.

    M U Khandaker, H Haba, J Kanaya and N Otuka, Nucl. Instrum. Methods B 316, 33 (2013)

  11. 11.

    A Iguchi, H Amano and S Tanaka, J. At. Energy Soc. Jpn  2, 682 (1960)

    Article  Google Scholar 

  12. 12.

    W W Bowman and M Blann, J. Nucl. Phys. A 131, 513 (1969)

    ADS  Article  Google Scholar 

  13. 13.

    A E Vlieks, J F Morgan and S L Blatt, J. Nucl. Phys. A 224, 492 (1974)

    ADS  Article  Google Scholar 

  14. 14.

    R Michel, G Brinkmann and R Stuck, Proceedings of the Antwerp Conference on Nuclear Data for Science and Technology (Springer, Dordrecht, Netherlands, 1982) p. 599)

  15. 15.

    H Vonach, R C Haight and G Winkler, Phys. Rev. C 28, 2278 (1983)

    ADS  Article  Google Scholar 

  16. 16.

    J Rama Rao, A V Mohan Rao, S Mukherjee, R Upadhyay, N L Singh, S Agarval, L Chaturvedi and P P Singh, J. Phys. G 13, 535 (1987)

  17. 17.

    V N Levkovskij, Activation cross sections of average masses (A = 40–100) by protons and \(\alpha \)-particles with average energies (E = 10–50 MeV) (Inter Vesi, Moscow, USSR, 1991)

  18. 18.

    A A Sonzogni, A S M A Romo, H O Mosca and S J Nassiff, J. Radioanal. Nucl. Chem. 170, 143 (1993)

    Article  Google Scholar 

  19. 19.

    N L Singh, S Agraval and J Rama Rao, Can. J. Phys. 71, 115 (1993)

    ADS  Article  Google Scholar 

  20. 20.

    V Y Hansper, A J Morton, S G Tims, C I W Tingwell, A F Scott and D G Sargood, J. Nucl. Phys. A 551, 158 (1993)

    ADS  Article  Google Scholar 

  21. 21.

    M Ismail, Pramana – J. Phys. 40, 227 (1993)

  22. 22.

    N L Singh, S Mukherjee, A V Mohan Rao, L Chaturvedi and P P Singh, J. Phys. G 21, 399 (1995)

  23. 23.

    D P Chowdhury, S Pal, S K Saha and S Gangadharan, J. Nucl. Instrum. Methods B 103, 261 (1995)

    ADS  Article  Google Scholar 

  24. 24.

    B Bindu Kumar, S Mukherjee and N L Singh, Phys. Scr. 57, 201 (1998)

    ADS  Article  Google Scholar 

  25. 25.

    X Peng, H Fuqing and X Long, J. Nucl. Instrum. Methods B 152, 432 (1999)

  26. 26.

    A Hermanne, R Adam Rebeles, F Tárkányi and S Takács, Nucl. Instrum. Methods B 356357, 28 (2015)

  27. 27.

    K Abe, A Lizuka, A Hasegawa and S Morozumi, J. Nucl. Mater. 122--123, 972 (1984)

    ADS  Article  Google Scholar 

  28. 28.

    N N Krasnov and P P Dmitriev, Atomnaya Energiya 21, 52 (1966)

    Google Scholar 

  29. 29.

    F Tárkányi, F Ditrói, S Takács, A Hermanne, M Baba and A V Ignatyuk, Nucl. Instrum. Methods B 269, 1792 (2011)

    ADS  Article  Google Scholar 

  30. 30.

    B M Ali, M Al-Abyad, U Seddik, S U El-Kameesy, F Ditrói, S Takács and F Tárkányi, Nucl. Instrum. Methods B 373, 76 (2016)

    ADS  Article  Google Scholar 

  31. 31.

    Z Kormány, Nucl. Instrum. Methods A 337, 258 (1994)

    ADS  Article  Google Scholar 

  32. 32.

    F Tárkányi, S Takács, K Gul, A Hermanne, M G Mustafa, M Nortier, P Oblozinsky, S M Qaim, B Scholten, Yu N Shubin and Z Youxiang, IAEA TECDOC-1211, Beam monitors reactions: charged particles cross-sections database for medical radioisotope production, Coordinated Research Project (IAEA, Vienna, 2001) pp. 77–80, available from: http://www.nds.iaea.org/medical (Updated version January 2007)

  33. 33.

    J F Ziegler, M D Ziegler and J P Biersack, SRIM 2013 code, available from: http://srim.org

  34. 34.

    G Székely, Comput. Phys. Commun. 34, 313 (1985)

    ADS  Article  Google Scholar 

  35. 35.

    National Nuclear Data Center, Brookhaven National Laboratory, NuDat 2.6 database, available from: http://www.nndc.bnl.gov/hbin/nudat

  36. 36.

    ISO, Guide to expression of uncertainty in measurement, ISBN 92-67-10188-9 (International Organization for Standardization, Geneva, 1995)

  37. 37.

    M Herman, R Capote, M Sin, A Trkov, B V Carlson, P Obložinský, C M Mattoon, H Wienke, S Hoblit, C Young-Sik, V Plujko and V Zerkin, EMPIRE-3.1 Rivoli: Modular system for nuclear reaction calculations and nuclear data evaluation; User’s Manual (2012)

  38. 38.

    M Herman, R Capote, M Sin, A Trkov, B V Carlson, P Obložinský, C M Mattoon, H Wienke, S Hoblit, C Young-Sik, G P A Nobre, V A Plujko and V Zerkin, EMPIRE-3.2 Malta: Modular system for nuclear reaction calculations and nuclear data evaluation; User’s Manual (2013)

  39. 39.

    A J Koning, S Hilaire and S Goriely, TALYS-1.6: A nuclear reaction program, Nuclear Research and Consultancy Group (NRG) (2013)

  40. 40.

    M N Aslam and S M Qaim, Appl. Radiat. Isot. 89, 65 (2014)

    Article  Google Scholar 

  41. 41.

    B M Ali, M Al-Abyad, U Seddik, S U El-Kameesy, F Ditrói, S Takács and F Tárkányi, Nucl. Instrum. Methods B 321, 30 (2014)

    ADS  Article  Google Scholar 

  42. 42.

    A Ssyed, A Elbinawi, M Al-Abyad, U Seddik and I I Bashter, Pramana – J. Phys. 84, 569 (2015)

  43. 43.

    IAEA-CRP, Reference Input Parameter Library (RIPL), IAEA-TECDOC-1034, Vienna (1998), http://www-nds.iaea.org/RIPL-3/

  44. 44.

    A J Koning, D Rochman, J Kopecky, J Ch Sublet, M Fleming, E Bauge, S Hilaire, P Romain, B Morillon, H Duarte, S van der Marck, S Pomp, H Sjostrand, R Forrest, H Henriksson, O Cabellos, S Goriely, J Leppanen, H Leeb, A Plompen and R Mills, TENDL-2015: TALYS-based evaluated nuclear data library (2016)

  45. 45.

    Table curve: 2d-Automated curve fitting analysis, Systat Software Inc, available from: www.sigmaplot.co.uk/products/tablecurve2d/tablecurve2d.php

Download references

Acknowledgements

This work was supported and funded by Hungarian Scholarship Board through the Balassi Institute, Institute for Nuclear Research (ATOMKI), Hungarian Academy of Science and the Egyptian Academy of Scientific Research& Technology (ASRT). The authors acknowledge the staff and operators of Debrecen cyclotron for their help in performing irradiations. One of the authors (B M Ali) greatly appreciate the hospitality and support of the Institute for Nuclear Research (ATOMKI), Debrecen.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M Al-Abyad.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ali, B.M., Al-Abyad, M., Seddik, U. et al. Activation cross-section data for \(\alpha \)-particle-induced nuclear reactions on natural vanadium for practical applications. Pramana - J Phys 90, 41 (2018). https://doi.org/10.1007/s12043-018-1527-z

Download citation

Keywords

  • \(^{4}\hbox {He}\) beam
  • \(\alpha \)-particles
  • \(^{\mathrm{nat}}\hbox {V}\)
  • induced nuclear reaction
  • \(^{54}\hbox {Mn}\)
  • \(^{52}\hbox {Mn}\)
  • cross-section
  • excitation function
  • stacked-foil technique
  • integral yield

PACS No

  • 25.55.-e