Skip to main content
Log in

Universal fluctuations in orbital diamagnetism

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Bohr–van Leuween theorem has attracted the notice of physicists for more than 100 years. The theorem states about the absence of magnetisation in classical systems in thermal equilibrium. In this paper, we discuss about fluctuations of magnetic moment in classical systems. In recent years, this topic has been investigated intensively and it is not free from controversy. We have considered a system consisting of a single particle moving in a plane. A magnetic field is applied perpendicular to the plane. The system is in contact with a thermal bath. We have considered three cases: (a) particle moving in a homogeneous medium, (b) particle moving in a medium with space-dependent friction and (c) particle moving in a medium with space-dependent temperature. For all the three cases, the average magnetic moment and fluctuations in magnetic moment have been calculated. Average magnetic moment saturates to a finite value in the case of free particle but goes to zero when the particle is confined by a 2D harmonic potential. Fluctuations in magnetic moment shows universal features in the presence of arbitrary friction inhomogeneity. For this case, the system reaches equilibrium asymptotically. In the case of space-dependent temperature profile, the stationary distribution is non-Gibbsian and fluctuations deviate from universal value for the bounded system only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R E Peierls, Surprises in theoretical physics (Princeton University Press, Princeton, 1979)

    Google Scholar 

  2. N Bohr, Studies over metallerners elektrontheori, Ph.D. Thesis (Copenhagen, 1911)

  3. J H van Leeuwen, J. Phys. (Paris) 2, 1361 (1921)

    Google Scholar 

  4. J H V Vleck, The theory of electric and magnetic susceptibilities (Oxford University Press, London, 1932)

    MATH  Google Scholar 

  5. A M Jayannavar and N Kumar, J. Phys. A 14, 1399 (1981)

    Article  ADS  Google Scholar 

  6. A M Jayannavar, Quantum transport in random media, Ph.D. Thesis (Indian Institute of Science, Bengaluru, 1982)

  7. N Kumar and K Vijay Kumar, Europhys. Lett. 86, 17001 (2009)

  8. T A Kaplan and S D Mahanti, Europhys. Lett.  87, 17002 (2009)

    Article  ADS  Google Scholar 

  9. P Pradhan and U Seifert, Europhys. Lett. 89, 37001 (2010)

    Article  ADS  Google Scholar 

  10. Dibyendu Roy and N Kumar, Phys. Rev. E 78, 052102 (2008)

    Article  ADS  Google Scholar 

  11. C Jarzynski, Phys. Rev. Lett78, 2690 (1997)

    Article  ADS  Google Scholar 

  12. C Jarzynski, Phys. Rev. E 56, 5018 (1997)

    Article  ADS  Google Scholar 

  13. C Jarzynski, Ann. Rev. Cond. Matter Phys. 2, 329 (2011)

    Article  ADS  Google Scholar 

  14. A Saha and A M Jayannavar, Phys. Rev. E 77, 022105 (2008)

    Article  ADS  Google Scholar 

  15. A M Jayannavar and Mamata Sahoo, Phys. Rev. E 75, 032102 (2007)

    Article  ADS  Google Scholar 

  16. J I Jiménez-Aquino, R M Velasco and F J Uribe, Phys. Rev. E 78, 032102 (2008)

    Article  ADS  Google Scholar 

  17. J I Jiménez-Aquino, Phys. Rev. E 92, 022149 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  18. Avinash A Deshpande and N Kumar, arXiv:1206.3440

  19. N Kumar, Phys. Rev. E 85, 011114 (2012)

    Article  ADS  Google Scholar 

  20. M C Mahato, T P Pareek and A M Jayannavar, Int. J. Mod. Phys. 10, 28 (1996)

    Article  Google Scholar 

  21. A M Jayannavar and Mangal C Mahato, Pramana – J. Phys. 45, 369 (1995)

    Article  ADS  Google Scholar 

  22. R Landauer, Phys. Today 31, 23 (1978)

    Article  Google Scholar 

  23. R Landauer, Ann. N.Y. Acad. Sci. 316, 433 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  24. R Landauer, Helv. Phys. Acta 56, 847 (1983)

    Google Scholar 

  25. R Landauer, J. Stat. Phys. 53, 233 (1988)

    Article  ADS  Google Scholar 

  26. R Landauer, Physica A 194, 551 (1993)

    Article  ADS  Google Scholar 

  27. J I Jiménez-Aquino, Phys. Rev. E  82, 051118 (2010)

    Article  ADS  Google Scholar 

  28. P S Pal and A M Jayannavar, manuscript to be submitted

Download references

Acknowledgements

A M J thanks Department of Science and Technology, India, for financial support (through J C Bose National Fellowship). A M J thanks N Kumar and S D Mahanti for several useful discussions during the initial period of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P S Pal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, P.S., Saha, A. & Jayannavar, A.M. Universal fluctuations in orbital diamagnetism. Pramana - J Phys 90, 29 (2018). https://doi.org/10.1007/s12043-018-1521-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-018-1521-5

Keywords

PACS Nos

Navigation