Skip to main content
Log in

Effect of ferromagnetic exchange field on band gap and spin polarisation of graphene on a TMD substrate

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We calculate the electronic band dispersion of graphene monolayer on a two-dimensional transition metal dichalcogenide substrate (GrTMD) around K and \(\mathbf{K}^{\prime }\) points by taking into account the interplay of the ferromagnetic impurities and the substrate-induced interactions. The latter are (strongly enhanced) intrinsic spin–orbit interaction (SOI), the extrinsic Rashba spin–orbit interaction (RSOI) and the one related to the transfer of the electronic charge from graphene to substrate. We introduce exchange field (M) in the Hamiltonian to take into account the deposition of magnetic impurities on the graphene surface. The cavalcade of the perturbations yield particle–hole symmetric band dispersion with an effective Zeeman field due to the interplay of the substrate-induced interactions with RSOI as the prime player. Our graphical analysis with extremely low-lying states strongly suggests the following: The GrTMDs, such as graphene on \(\hbox {WY}_{2}\), exhibit (direct) band-gap narrowing / widening (Moss–Burstein (MB) gap shift) including the increase in spin polarisation (P) at low temperature due to the increase in the exchange field (M) at the Dirac points. The polarisation is found to be electric field tunable as well. Finally, there is anticrossing of non-parabolic bands with opposite spins, the gap closing with same spins, etc. around the Dirac points. A direct electric field control of magnetism at the nanoscale is needed here. The magnetic multiferroics, like \(\hbox {BiFeO}_{3}\) (BFO), are useful for this purpose due to the coupling between the magnetic and electric order parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K S Novoselov, A K Geim, S V Morozov, D Jiang, Y Zhang, S V Dubonos, I V Grigorieva and A A Firsov, Science 306(5696), 666 (2004)

  2. A H C Neto, F Guinea, N M R Peres, K S Novoselov and A K Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  3. I A Ovid’ko, Rev. Adv. Mater. Sci. 34, 1 (2013)

    Google Scholar 

  4. S A Maier, Plasmonics: Fundamentals and applications (Springer, 2007) Chapter 4

  5. K F Mak, C Lee, J Hone, J Shan and T F Heinz, Phys. Rev. Lett. 105, 136805 (2010)

    Article  ADS  Google Scholar 

  6. B Radisavljevic, A Radenovic, J Brivio, V Giacometti and A Kis, Nat. Nanotechnol. 6, 147 (2011)

    Article  ADS  Google Scholar 

  7. E Gibney, Nature 522, 274 (2015)

    Article  ADS  Google Scholar 

  8. L Likai, Y Yijun, G J Ye, Q Ge, X Ou, H Wu, D Feng, X H Chen and Y Zhang, Nat. Nanotechnol. 9, 372 (2014)

    Article  ADS  Google Scholar 

  9. Geoff Brumfiel, Nature 495, 152 (2013)

    Article  ADS  Google Scholar 

  10. L C Gomes and A Carvalho, Phys. Rev. B 92, 085406 (2015)

    Article  ADS  Google Scholar 

  11. R Guo, X Wang, Y Kuang and B Huang, Phys. Rev. B 92, 115202 (2015)

    Article  ADS  Google Scholar 

  12. A S Rodin, L C Gomes, A Carvalho and A H Castro Neto, Phys. Rev. B 93, 045431 (2016)

    Article  ADS  Google Scholar 

  13. C Kamal, A Chakrabarti and M Ezawa, Phys. Rev. B 93, 125428 (2016)

    Article  ADS  Google Scholar 

  14. A S Rodin, A Carvalho and A H Castro Neto, Phys. Rev. Lett. 112, 176801 (2014)

  15. E S Reich, Nature 506, 19 (2014)

    Article  ADS  Google Scholar 

  16. J Qiao, Nat. Commun. 5, 4475 (2014)

    Google Scholar 

  17. L Li, Y Yu, G J Ye, Q Ge, X Ou, H Wu, D Feng, X H Chen and Y Zhang, Nat. Nanotechnol. 9, 372 (2014)

    Article  ADS  Google Scholar 

  18. J Y Tan, A Avsar, J Balakrishnan, G K W Koon, T Taychatanapat, E C T O’Farrell, K Watanabe, T Tanigu-chi, G Eda, A H Castro Neto and B Özyilmaz, Appl. Phys. Lett. 104, 183504 (2014)

    Article  ADS  Google Scholar 

  19. A K Geim and I V Grigorieva, Nature 499, 419 (2013)

    Article  Google Scholar 

  20. W Xia, L Dai, P Yu, X Tong, W Song, G Zhang and Z Wang, Nanoscale 9, 4324 (2017)

    Article  Google Scholar 

  21. L Viti, J Hu, D Coquillat, A Politano, C Consejo, W Knap and M S Vitiello, Adv. Mater. 28, 7390 (2016)

    Article  Google Scholar 

  22. W J Yu, Z Li, H Zhou, Y Chen, Y Wang, Y Huang and X Duan, Nat. Mater. 12(3), 246 (2013)

  23. I Leven, T Maaravi, I Azuri, L Kronik and O Hod, J. Chem. Theory Comput. 12(6), 2896 (2016)

    Article  Google Scholar 

  24. G Argentero, A Mittelberger, M R A Monazam, Y Cao, T J Pennycook, C Mangler, C Kramberger, J Kotakoski, A K Geim and J C Meyer, Nano Lett. 17(3), 1409 (2017)

    Article  ADS  Google Scholar 

  25. M Kindermann, B Uchoa and D L Zero Miller, Phys. Rev. B 86, 115415 (2012)

    Article  ADS  Google Scholar 

  26. M Gmitra, D Kochan, P Hogl and J Fabian, arXiv:1510.00166 (2015); arXiv:1506.08954 (2015) M Gmitra and J Fabian, Phys. Rev. B 92, 155403 (2015) T Frank, P Hogl, M Gmitra, D Kochan and J Fabian, arXiv:1707.02124

  27. C L Kane and E J Mele, Phys. Rev. Lett. 95, 146802 (2005) C L Kane and E J Mele, Phys. Rev. Lett. 95, 226801 (2005) L Fu and C L Kane, Phys. Rev. B 76, 045302 (2007)

  28. J Balakrishnan, G K W Koon, A Avsar, Y Ho, J H Lee, M Jaiswal, S-J Baeck, J-H Ahn, A Ferreira, M A Cazalilla, A H C Neto and B Ozyilmaz, Nat. Commun. 5, 4748 (2014)

    Article  Google Scholar 

  29. B A Bernevig and S C Zhang, Phys. Rev. Lett. 96, 106802 (2006) B A Bernevig, T L Hughes and S C Zhang, Science 314, 1757 (2006) X-L Qi and S-C Zhang, Rev. Mod. Phys. 83, 1057 (2011)

  30. Xufeng Kou, Shih-Ting Guo, Yabin Fan, Lei Pan, Murong Lang, Ying Jiang, Qiming Shao, Tianxiao Nie, Koichi Murata, Jianshi Tang, Yong Wang, Liang He, Ting-Kuo Lee, Wei-Li Lee and Kang L Wang, Phys. Rev. Lett. 113, 199901 (2014)

    Article  ADS  Google Scholar 

  31. A J Bestwick, E J Fox, Xufeng Kou, Lei Pan, Kang L Wang and D Goldhaber-Gordon, Phys. Rev. Lett. 114, 187201 (2015)

    Article  ADS  Google Scholar 

  32. S Y Zhou, G-H Gweon, A V Fedorov, P N First, W A de Heer, D-H Lee, F Guinea, A H Castro Neto and A Lanzara, Nat. Mater. 6, 770 (2007)

    Article  ADS  Google Scholar 

  33. D Kochan, S Irmer, M Gmitra and J Fabian, Phys. Rev. Lett. 115, 196601 (2015)

    Article  ADS  Google Scholar 

  34. D Kochan, S Irmer and J Fabian, Phys. Rev. B 95, 165415 (2017)

    Article  ADS  Google Scholar 

  35. Z Wang, D-K Ki, H Chen, H Berger, A H MacDonald and A F Morpurgo, Nat. Commun. 6, 8339 (2015)

    Article  Google Scholar 

  36. M Daghofer, N Zheng and A Moreo, Phys. Rev. B 82, 121405 RC (2010)

  37. A M Black-Schaffer, Phys. Rev. B 80, 205416 (2010)

    Article  ADS  Google Scholar 

  38. A Hallal, F Ibrahim, H Yang, S Roche and M Chshiev, 2D Materials (IOP Publishing Ltd, 2017) Vol 4, No 2

  39. D Gunlycke and C T White, Phys. Rev. Lett. 106, 13686 (2011) M M Grujić, M Ž Tadić and F M Peeters, Phys. Rev. Lett. 113, 046601 (2014)

  40. Q-P Wu, Z-F Liu, A-X Chen, X-B Xiao and Z-M Liu, Sci. Rep. 6, 21590 (2016), https://doi.org/10.1038/srep21590

  41. W-K Tse, Z Qiao, Y Yao, A H MacDonald and Q Niu, Phys. Rev. B 83, 155447 (2011)

    Article  ADS  Google Scholar 

  42. O V Yazye, Rep. Prog. Phys. 73, 056501 (2010)

    Article  ADS  Google Scholar 

  43. Y Yang, Z Xu, L Sheng, B Wang, D Y Xing and D N Sheng, Phys. Rev. Lett. 107, 066602 (2011)

    Article  ADS  Google Scholar 

  44. M Ezawa, Phys. Rev. Lett. 109, 055502 (2012)

    Article  ADS  Google Scholar 

  45. Vo Tien Phong, N R Walet and F Guinea, arXiv:1707.03868 (2017) (Unpublished)

  46. A M Alsharari, M M Asmar and S E Ulloa, arXiv:1608.00992 (2016) (Unpublished)

  47. Z Wang and S-C Zhang, Phys. Rev. X 2, 031008 (2012)

    Google Scholar 

  48. M Z Hasan and C L Kane, Rev. Mod. Phys. 82, 3045 (2010)

    Article  ADS  Google Scholar 

  49. X-L Qi and S-C Zhang, Rev. Mod. Phys. 83, 1057 (2011)

    Article  ADS  Google Scholar 

  50. N F Mott, Proc. R. Soc. London A 124, 425 (1929)

    Article  ADS  Google Scholar 

  51. E Burstein, Phys. Rev. 93(3), 632 (1954)

    Article  ADS  Google Scholar 

  52. T S Moss, Proc. Phys. Soc. B 67(10), 775 (1954)

  53. G I Zebrev, Proceedings of 26th International Conference on Microelectronics (MIEL) (Nis, Serbia, 2008), p. 159, arXiv:1102.2348 (2011)

  54. Z Qiao, W Ren, H Chen, L Bellaiche, Z Zhang, A H MacDonald and Q Niu, Phys. Rev. Lett. 112, 116404 (2014)

    Article  ADS  Google Scholar 

  55. J Lahiri, Nat. Nanotechnol. 5, 326 (2010)

    Article  ADS  Google Scholar 

  56. D Gunlycke, S Vasudevan and C T White, Nano Lett. 13, 259 (2013)

    Article  ADS  Google Scholar 

  57. S Fusil, V Garcia, A Barthélémy and M Bibes, Annu. Rev. Mater. Res. 44, 91 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partha Goswami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goswami, P. Effect of ferromagnetic exchange field on band gap and spin polarisation of graphene on a TMD substrate. Pramana - J Phys 90, 40 (2018). https://doi.org/10.1007/s12043-017-1515-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-017-1515-8

Keywords

PACS Nos

Navigation