Advertisement

Pramana

, 90:17 | Cite as

Relativistic effects in the study of weakly bound \({}^{17}\)F and \({}^{11}\)Be nuclei

  • Fahime Rezvani
  • Mohammad Reza Shojaei
Article
  • 77 Downloads

Abstract

Relativistic effects are employed to describe the weakly bound nuclei of \({}^{17}\)F and \({}^{11}\)Be. In order to calculate the energy levels of the ground state and the excited states of these nuclei, we solved the Dirac equation with pseudospin symmetry in the shell model by using the basic concept of supersymmetric shape invariance method. The results obtained from this approach are compared with a non-relativistic approach and experiment. It was then seen that the relativistic approach matches more with the experimental results.

Keywords

Relativistic effects weakly bound nuclei supersymmetry shape invariance method 

PACS No

21.10.−k 

References

  1. 1.
    J D Waleca, Ann. Phys. 83, 491 (1974)ADSCrossRefGoogle Scholar
  2. 2.
    B D Serot and J D Waleca, Adv. Nucl. Phys. 16, 1 (1986)Google Scholar
  3. 3.
    P Ring, Prog. Part. Nucl. Phys. 37, 193 (1996)ADSCrossRefGoogle Scholar
  4. 4.
    H Kucharek and P Ring, Z. Phys. A 339, 23 (1991)Google Scholar
  5. 5.
    J Meng and P Ring, Phys. Rev. Lett. 77, 3963 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    H Egrifes and R Sever, Phys. Lett. A 344, 117 (2005)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    W C Qiang, R S Zhou and Y Gao, Phys. Lett. A 333, 8 (2004)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    H Motavali, Mod. Phys. Lett. A 24, 1227 (2009)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    S M Ikhdair and R Sever, Appl. Math. Comp. 46, 545 (2010)CrossRefGoogle Scholar
  10. 10.
    M R Setare and Z Nazari, Acta. Phys. Polon. B 40, 2809 (2009)ADSMathSciNetGoogle Scholar
  11. 11.
    L H Zhang, X P Li and C S Jia, Phys. Lett. A 372, 2201 (2008)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    F Zhou, Y Wu and J Y Guo, Commun. Theor. Phys. (Beijing, China) 52, 813 (2009)Google Scholar
  13. 13.
    O Aydogdu and R Sever, Ann. Phys. 325, 373 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    G F Wei and S H Dong, Phys. Lett. B 686, 288 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    J Y Guo and Z Q Sheng, Phys. Lett. A 338, 90 (2005)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    J N Ginocchio, Phys. Rev. C 69, 034318 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    J N Ginocchio, Phys. Rev. Lett. 78, 436 (1997)ADSCrossRefGoogle Scholar
  18. 18.
    J N Ginocchio, Phys. Rep. 414, 165 (2005)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    P Alberto et al, J. Phys. Conf. Ser. 490, 012069 (2014)CrossRefGoogle Scholar
  20. 20.
    J S Bell and H Ruegg, Nucl. Phys. B 98, 151 (1975)ADSCrossRefGoogle Scholar
  21. 21.
    P Alberto et al, Phys. Rev. A 92, 062137 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    P R Page, T Goldman and J N Ginocchio, Phys. Rev. Lett. 86, 204 (2001)Google Scholar
  23. 23.
    G B Smith and L J Tassie, Ann. Phys. 65, 352 (1971)ADSCrossRefGoogle Scholar
  24. 24.
    A Arima, M Harvey and K Shimizu, Phys. Lett. B 30, 517 (1969)ADSCrossRefGoogle Scholar
  25. 25.
    K T Hecht and A Adler, Nucl. Phys. A 137, 129 (1969)ADSCrossRefGoogle Scholar
  26. 26.
    A Bohr, I Hamamoto and B R Mottelson, Phys. Scr. 26, 267 (1982)ADSCrossRefGoogle Scholar
  27. 27.
    J Dudek et al, Phys. Rev. Lett. 59, 1405 (1987)ADSCrossRefGoogle Scholar
  28. 28.
    D Troltenier, C Bahri and J P Draayer, Nucl. Phys. A 586, 53 (1995)ADSCrossRefGoogle Scholar
  29. 29.
    J Meng et al, Phys. Rev. C 58, R628 (1998)ADSCrossRefGoogle Scholar
  30. 30.
    M Moshinsky and A Szczepaniak, J. Phys. A: Math. Gen. 22, 817 (1989)ADSCrossRefGoogle Scholar
  31. 31.
    G Mao, Phys. Rev. C 67, 044318 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    H Akcay and C Tezcan, Int. J. Mod. Phys. C 20, 931 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    M Moshinsky and Y Smirnov, The harmonic oscillator in modern physics (Hardwood Academic Publishers, The Netherlands, 1996) pp. 289–404Google Scholar
  34. 34.
    M H Pacheco, R R Landim and C A S Almedia, Phys. Lett. A 311, 93 (2003)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    O Aydogdu and R Sever, Few-Boby Syst. 47, 193 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    S Zarrinkamar, A A Rajabi and H Hassanabadi, Ann. Phys. 325, 2522 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    M R Shojaei and A A Rajabi, Int. J. Phys. Sci. 6, 33 (2011)Google Scholar
  38. 38.
    H Feizi, A A Rajabi and M R Shojaei, Acta Phys. Polon. B 42, 2143 (2011)MathSciNetCrossRefGoogle Scholar
  39. 39.
    H Feizi, M R Shojaei and A A Rajabi, Eur. Phys. J. Plus 127, 41 (2012)CrossRefGoogle Scholar
  40. 40.
    A Soylu, O Bayrak and I Boztosun, J. Math. Phys. 48, 082302-9 (2007)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    M Farrokh, M R Shojaei and A A Rajabi, Eur. Phys. J. Plus 128, 14 (2013)CrossRefGoogle Scholar
  42. 42.
    X Zou, L Z Yi and C S Jia, Phys. Lett. A 346, 54 (2005)Google Scholar
  43. 43.
    J Y Gou and Z Q Sheng, Phys. Lett. A 338, 90 (2005)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    Y Xu, S He and C S Jia, J. Phys. A: Math. Theor. 41, 255302 (2008)ADSCrossRefGoogle Scholar
  45. 45.
    L E Gendenshtein, Sov. Phys-JETP Lett. 38, 356 (1983)ADSGoogle Scholar
  46. 46.
    C A Bertulani and P Danielewicz, Nucl. Phys. A 717, 19 (2003)CrossRefGoogle Scholar
  47. 47.
    R Morlock et al, Phys. Rev. Lett. 79, 3837 (1997)ADSCrossRefGoogle Scholar
  48. 48.
    S M Ikhdair and R Sever, Cent. Eur. J. Phys. 8(4), 652 (2010)Google Scholar
  49. 49.
    M Hamzavi, S M Ikhdair and B I Ita, Phys. Scr. 85, 045009 (2012)ADSCrossRefGoogle Scholar
  50. 50.
    Y Sun, S He and C S Jia, Phys. Scr. 87, 025301 (2013)Google Scholar
  51. 51.
    R D Woods and D S Saxon, Phys. Rev. 95, 577 (1954)ADSCrossRefGoogle Scholar
  52. 52.
    P Alberto et al, Phys. Rev. C 71, 034313 (2005)ADSCrossRefGoogle Scholar
  53. 53.
    G R Satchler, Direct nuclear reactions (Oxford University Press, London, 1983)zbMATHGoogle Scholar
  54. 54.
    F Cooper, J N Ginocchio and A Khare, Phys. Rev. D 36, 2458 (1987)ADSMathSciNetCrossRefGoogle Scholar
  55. 55.
    S H Dong et al, J. Phys. A: Math. Theor. 40, 10535 (2007)ADSCrossRefGoogle Scholar
  56. 56.
    N K Akpan et al, Commun. Theor. Phys. 61, 457 (2014)ADSCrossRefGoogle Scholar
  57. 57.
    F Cooper, A Khare and U Sukhatme, Phys. Rep. 251, 267 (1995)ADSMathSciNetCrossRefGoogle Scholar
  58. 58.
    C S Jia et al, Commun. Theor. Phys. 37, 523 (2002)ADSCrossRefGoogle Scholar
  59. 59.
    W Greiner, Quantum mechanics (Springer, Berlin, 2001)Google Scholar
  60. 60.
    S H Dong, Wave equation in higher dimension (Springer, Berlin, 2012)Google Scholar
  61. 61.
    K S Krane, Introductory nuclear physics (Kim Hup Lee Printing Co, 1955)Google Scholar
  62. 62.
  63. 63.
    G Audi, A H Wapstra and C Thibault, Nucl. Phys. A 729, 337 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Department of PhysicsShahrood University of TechnologyShahroodIran

Personalised recommendations