Skip to main content
Log in

Dynamic evolution of double \(\Lambda \) five-level atom interacting with one-mode electromagnetic cavity field

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this paper, the model describing a double \(\Lambda \) five-level atom interacting with a single mode electromagnetic cavity field in the (off) non-resonate case is studied. We obtained the constants of motion for the considered model. Also, the state vector of the wave function is given by using the Schrödinger equation when the atom is initially prepared in its excited state. The dynamical evolutions for the collapse revivals, the antibunching of photons and the field squeezing phenomena are investigated when the field is considered in a coherent state. The influence of detuning parameters on these phenomena is investigated. We noticed that the atom–field properties are influenced by changing the detuning parameters. The investigation of these aspects by numerical simulations is carried out using the Quantum Toolbox in Python (QuTip).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. E T Jaynes and F W Cummings, Proc. IEEE  51, 89 (1963)

    Article  Google Scholar 

  2. S Feneuile, Rep. Prog. Phys.  40, 1257 (1977)

    Article  ADS  Google Scholar 

  3. X-S Li, D L Li and C D Dong, Phys. Rev. A  36, 5209 (1987)

    Article  ADS  Google Scholar 

  4. Z-D Liu, X-S Li and D L Lin, Phys. Rev. A  36, 5220 (1987)

    Article  ADS  Google Scholar 

  5. N H Abdel-Wahab, Phys. Scr.  76, 233 (2007); Phys. Scr . 76, 244 (2007)

    Article  ADS  Google Scholar 

  6. A Salah, Quantum aspects for three-level atom with one mode cavity field (Lambert Academic Publishing, 2015)

  7. Z D Liu, S-Y Zhu and X-S Li, J. Mod. Opt.  45, 833 (1988)

    Article  ADS  Google Scholar 

  8. A-S F Obada, A M M Abu-Sitta and O M Yassin, J. Egypt Math. Soc.  2, 103 (1994)

  9. K I Osman and H A Ashi, Physica A  310, 165 (2002)

    Article  ADS  Google Scholar 

  10. N H Abdel-Wahab, M E Amin and M Taha, Fizika (Zagreb)  2, 113 (2006)

    ADS  Google Scholar 

  11. N H Abdel-Wahab, J. Appl. Math. Inf. Sci.  1, 263 (2007)

    MathSciNet  Google Scholar 

  12. N H Abdel-Wahab, J. Phys. B: At. Mol. Opt. Phys.  40, 4233 (2007)

    Article  ADS  Google Scholar 

  13. N H Abdel-Wahab, J. Phys. B: At. Mol. Opt. Phys.  41, 105502 (2008)

    Article  ADS  Google Scholar 

  14. N H Abdel-Wahab, Mod. Phys. Lett. B  22, 2801 (2008)

    Article  ADS  Google Scholar 

  15. N H Abdel-Wahab, Nouvo Cimento B  125, 173 (2010)

    Google Scholar 

  16. M Mahjoei, M M Golshan and H Safari, Pramana – J. Phys.  80, 5 (2013)

    Google Scholar 

  17. E K Bashkirov and M S Mastyugin, Pramana – J. Phys.  84, 1 (2015)

    Google Scholar 

  18. S Abdel-Khalek and S H A Halawani, Pramana – J. Phys.  85, 6 (2015)

    Google Scholar 

  19. S Ahmed, P N Wasnik, S Singh and P A Lakshmi, Pramana – J. Phys.  87, 85 (2016)

    Google Scholar 

  20. D Bhattacharyya, B Ray and P N Ghosh, J. Phys. B: At. Mol. Opt. Phys.  40, 4061 (2007)

    Article  ADS  Google Scholar 

  21. M A Anton, F Carreno,Ô G Calderón, S Melle and I Gonzalo, Opt. Commun.  281, 24 (2008)

    Google Scholar 

  22. N H Abdel-Wahab, Mod. Phys. Lett. B  25, 1971 (2011)

    Article  ADS  Google Scholar 

  23. Z Wang, B Yu, J Zhu, Z Cao, S Zhen and X Wu, Ann. Phys.  327, 1132 (2012)

    Article  ADS  Google Scholar 

  24. N H Abdel Wahab and A Salah, Eur. Phys. J. Plus  130, 92 (2015)

  25. N H Abdel Wahab and A Salah, Mod. Phys. Lett.  25, 29 (2015)

    ADS  Google Scholar 

  26. R Loundon, The quantum theory of light (Clarendon Press, Oxford, 1983)

    Google Scholar 

  27. M S Kim, J. Mod. Opt.  40, 1331. 2412 (1993)

  28. R E Slusher, W Hollberg, B Yurke, J C Mertz and J F Valley, Phys. Rev. Lett.  55 (1985)

  29. R M Shelby, M D Levenson, S H Perlmutter, R G De Voe and D F Walls, Phys. Rev. Lett. 57 (1986)

  30. L A Wu, H J Kimble, J L Hall and H Wu, Phys. Rev. Lett.  57, 2520 (1986)

    Article  ADS  Google Scholar 

  31. H A Bachor, A guide to experiments in quantum optics (Wiley, Weinheim, 1998)

    MATH  Google Scholar 

  32. H A Haus, Electromagnetic noise and quantum optical measurements (Springer, Berlin, 2000)

    Book  MATH  Google Scholar 

  33. J Kim, S Somani and Y Yamamoto, Nonclassical light from semiconductor lasers and LEDs (Springer, Berlin, 2001)

    Book  Google Scholar 

  34. S L Braunstein and H J Kimble, Phys. Rev. Lett.  80, 869 (1998)

    Article  ADS  Google Scholar 

  35. G J Milburn and S L Braunstein, Phys. Rev. A  60, 937 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  36. A Furusawa, J Sorensen, S L Braunstein, C A Fuchs, H J Kimble and E S Polzik, Science  282, 706 (1998)

    Article  ADS  Google Scholar 

  37. T C Ralph, Phys. Rev. A  61, 010303 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  38. M Hillery, Phys. Rev. A  61, 022309 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  39. M Ban, Phys. Lett. A  276, 213 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  40. M Ban, J. Opt. B: Quantum Semiclass. Opt.  2, 786 (2000)

    Article  ADS  Google Scholar 

  41. H P Yuen and J H Shapiro, IEEE Trans. Inf. Theory 24, 657 (1978)

    Article  Google Scholar 

  42. H P Yuen and J H Shapiro, IEEE Trans. Inf. Theory 25, 179 (1979)

    Article  Google Scholar 

  43. H P Yuen and J H Shapiro, IEEE Trans. Inf. Theory  26, 78 (1980)

    Article  Google Scholar 

  44. J H Shapiro, Opt. Lett.  5, 351 (1980)

    Article  ADS  Google Scholar 

  45. C M Caves and B I Schumaker, Phys. Rev. A  31, 3068 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  46. B I Schumaker and C M Caves, Phys. Rev. A  31, 3093 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  47. S L Braunstein and H L Kimple, Phys. Rev. A  61, 042302 (2002)

    Article  ADS  Google Scholar 

  48. U Leonhardt, Measuring the quantum state of light (Cambridge University Press, 1997)

  49. N H A El-Wabab, A S A Rady, A N A Osman and A Salah, Euro Phys. J. Plus 130(10), 207 (2015)

  50. U Leonhardt, Measuring the quantum state of light, in: Cambridge studies in modern optics (Cambridge University Press, 1997)

  51. H J Carmichael, Statistical methods in quantum optics I: Master equations and Fokker–Planck equations (Springer-Verlag, 2002)

  52. D J E Callaway, Nucl. Phys. B  344, 627 (1990)

    Article  ADS  Google Scholar 

  53. J R Johansson, P D Nation and Franco Nori, Comput. Phys. Commun.  184(4), 1234 (2013)

    Article  ADS  Google Scholar 

  54. O Schmidt, R Wynands, Z Hussein and D Meschede, Phys. Rev. A  53, R27 (1996)

    Article  ADS  Google Scholar 

  55. S E Harris, Phys. Today  50, 36 (1997)

    Article  Google Scholar 

  56. M Fleischhauer and M D Lukin, Phys. Rev. Lett.  84, 5094 (2000)

    Article  ADS  Google Scholar 

  57. S E Harris, Phys. Rev. Lett.  62, 1033 (1989)

    Article  ADS  Google Scholar 

  58. A S Zibrov, M D Lukin, D E Nikonov, L Hollberg, M O Scully, V L Velichansky and H G Robinson, Phys. Rev. Lett.  75, 1499 (1995)

    Article  ADS  Google Scholar 

  59. E Ahmed, A Hansson, P Qi, T Kirova, L Li, J Qi, A Lazoudis, S Magnier, S Kotochigova and A M Lyyra, J. Chem. Phys.  124, 084308 (2006)

    Article  ADS  Google Scholar 

  60. B D Yang, Q B Liang, J He, T C Zhang and J M Wang, Phys. Rev. A  81, 043803 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Salah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Wahab, N.H., Salah, A. Dynamic evolution of double \(\Lambda \) five-level atom interacting with one-mode electromagnetic cavity field. Pramana - J Phys 89, 87 (2017). https://doi.org/10.1007/s12043-017-1485-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-017-1485-x

Keywords

PACS Nos

Navigation