Pramana

, 89:72 | Cite as

A nonstandard numerical method for the modified KdV equation

Article
  • 49 Downloads

Abstract

A linearly implicit nonstandard finite difference method is presented for the numerical solution of modified Korteweg–de Vries equation. Local truncation error of the scheme is discussed. Numerical examples are presented to test the efficiency and accuracy of the scheme.

Keywords

Nonstandard finite difference modified Korteweg–de Vries equation local truncation error 

PACS Nos

02.70.Bf 02.30.Jr 02.60.Lj 

Notes

Acknowledgements

The authors thank the referees for their valuable comments and suggestions.

References

  1. 1.
    M Wadati, J. Phys. Soc. Jpn 38, 673 (1975)Google Scholar
  2. 2.
    M J Ablowitz and H Segur, Solitons and inverse scattering transform (SIAM, Philadelphia, 1981)Google Scholar
  3. 3.
    R Hirota, Direct method of finding exact solutions of nonlinear evolution equations, in: Backlund transformations (Springer, Berlin, 1980) pp. 1157–75Google Scholar
  4. 4.
    W Malfliet, Am. J. Phys. 60, 650 (1992)Google Scholar
  5. 5.
    A M Wazwaz, Appl. Math. Comput. 184(2), 1002 (2007)Google Scholar
  6. 6.
    M Wadati, J. Phys. Soc. Jpn 34, 1289 (1972)Google Scholar
  7. 7.
    A M Wazwaza and G Q Xu, Math. Meth. Appl. Sci. 39, 661 (2016)Google Scholar
  8. 8.
    R M Miura, J. Math. Phys. 9, 1202 (1968)Google Scholar
  9. 9.
    Y Shi and J Xu, J. Geom. Phys. 90, 1 (2015)Google Scholar
  10. 10.
    K R Raslan and H A Baghdady, Gen. Math. Notes 27, 101 (2015)Google Scholar
  11. 11.
    C Zheng, Numer. Math. 105, 315 (2006)Google Scholar
  12. 12.
    A Bekir, Commun. Nonlinear Sci. Numer. Simulat. 14, 1038 (2009)Google Scholar
  13. 13.
    R E Mickens, Nonstandard finite difference models of differential equations (World Scientific, Singapore, 1994)Google Scholar
  14. 14.
    R E Mickens, Advences in applications of nonstandard finite difference schemes (Wiley-Interscience, Singapore, 2005)Google Scholar
  15. 15.
    R Anguelov, P Kama and J M-S. Lubuma, J. Comput. Appl. Math. 75, 11 (2005)Google Scholar
  16. 16.
    L Zhang, L Wang and X Ding, J. Appl. Math. 597926 (2014).Google Scholar

Copyright information

© Indian Academy of Sciences 2017

Authors and Affiliations

  1. 1.Department of MathematicsAtilim UniversityAnkaraTurkey
  2. 2.Department of MathematicsHacettepe UniversityAnkaraTurkey

Personalised recommendations