Skip to main content
Log in

Rope coiling

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We present the results of the combined experimental and theoretical investigation of rope coiling arising from the buckling instability. The shape of the rope is perfectly circular in the coiling region and is straight in the region below the feeding point. In between these two distant regions, the rope assumes a catenary-like shape in the limit of slow feeding velocity and a helix-like shape in the limit of fast feeding velocity. When there is an increase in the feeding velocity, the transverse displacement of deformation persists over the long distance far beyond the coiling region. The catenary is associated with the purely imaginary wave number and the helix is associated with the real wave number. The catenary-to-helix shape transition is particularly evident when the rope is fed from a large height.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A A Travers and J M T Thompson, Phil. Trans. R. Soc. Lond. A  362, 1265 (2004)

    Article  ADS  Google Scholar 

  2. A R Singh, D Giri and S Kumar, Pramana – J. Phys.  71, 283 (2008)

    Article  ADS  Google Scholar 

  3. C W Wolgemuth, T R Powers and R E Goldstein, Phys. Rev. Lett.  84, 1623 (2000)

    Article  ADS  Google Scholar 

  4. M A Dias, L H Dudte, L Mahadevan and C D Santangelo, Phys. Rev. Lett.  109, 114301 (2012)

    Article  ADS  Google Scholar 

  5. Y Kantor, Pramana – J. Phys.  64, 1011 (2005)

    Article  ADS  Google Scholar 

  6. D M Raymer and D E Smith, Proc. Natl. Acad. Sci.  104, 16432 (2007)

    Article  ADS  Google Scholar 

  7. E Bayart, S Deboeuf, F Corson, A Boudaoud and M A Bedia, Europhys. Lett.  95, 34002 (2011)

    Article  ADS  Google Scholar 

  8. J L Silverberg, R D Noar, M S Packer, M J Harrison, C L Henley, I Cohen and S J Gerbode, Proc. Natl. Acad. Sci.  109, 16794 (2012)

  9. A C Callan-Jones, P T Brun and B Audoly, Phys. Rev. Lett.  108, 174302 (2012)

    Article  ADS  Google Scholar 

  10. L Mahadevan and J B Keller, SIAM Rev.  41, 115 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  11. E Cerda and L Mahadevan, Phys. Rev. Lett.  90, 74302 (2003)

    Article  ADS  Google Scholar 

  12. H King, R D Schroll, B Davidovitch and N Menon, Proc. Natl. Acad. Sci.  109, 9716 (2012)

    Article  ADS  Google Scholar 

  13. N M Ribe, M Habibi and D Bonn, Annu. Rev. Fluid Mech.  44, 249 (2012)

    Article  ADS  Google Scholar 

  14. M Pineirua, M A Bedia and S Moulinet, Europhys. Lett.  104, 14005 (2013)

    Article  ADS  Google Scholar 

  15. M Habibi, N M Ribe and D Bonn, Phys. Rev. Lett.  99, 154302 (2007)

    Article  ADS  Google Scholar 

  16. M K Jawed and P M Reis, Extreme Mech. Lett.  1, 76 (2014)

    Article  Google Scholar 

  17. L Mahadevan and J B Keller, Proc. R. Soc. Lond. A  452, 1679 (1996)

    Article  ADS  Google Scholar 

  18. S S Antman, Nonlinear problems of elasticity (Springer, Berlin, 2005)

    MATH  Google Scholar 

  19. L D Landau and E M Lifshitz, Theory of elasticity (Pergamon, Oxford, 1970)

    MATH  Google Scholar 

  20. N M Ribe, Proc. R. Soc. Lond. A  460, 3223 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  21. M K Jawed, F Da, J Joo, E Grinspun and P M Reis, Proc. Natl. Acad. Sci.  111, 14663 (2014)

    Article  ADS  Google Scholar 

  22. S W Morris, J H P Dawes, N M Ribe and J R Lister, Phys. Rev. E  77, 66218 (2008)

    Article  ADS  Google Scholar 

  23. R Bandyopadhyay, Pramana – J. Phys.  81, 3 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author is grateful to M Fuangfoong and C Pattamaprom for useful discussion. He is indebted to P Pharob and N Teerachtragoon for the machine-shop assistance, and to P Srinukool for the measurement of the Young’s modulus. He also gratefully acknowledges an anonymous reviewer for the constructive comments and invaluable suggestions. This work has been supported by the DPST-graduate start-up research grant, contract number 24 / 2557, and by the TU new research scholar, contract number 4 / 2557.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sitichoke Amnuanpol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amnuanpol, S. Rope coiling. Pramana - J Phys 89, 69 (2017). https://doi.org/10.1007/s12043-017-1470-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-017-1470-4

Keywords

PACS Nos

Navigation