, 89:71 | Cite as

Photodetachment cross-section of \(\hbox {H}^{-}\,\hbox {ion}\) in a three-dimensional cubical microcavity

  • De-Hua Wang
  • Pang-Zhi Huan
  • Ke-Zheng Zhuang
  • Yu-Feng Li
  • Lei Xie


The photodetachment of negative ions inside a two-dimensional microcavity has been studied by many researchers. As to the photodetachment of negative ions in the three-dimensional microcavity, the research is relatively little. In this paper, we study the photodetachment cross-section of \(\hbox {H}^{-}\) ion inside a three-dimensional cubical microcavity for the first time. We have observed the classical dynamics of the photodetached electron inside the cubical microcavity and found out its closed orbits. Then we calculate the photodetachment cross-section of this system. It is shown that owing to the interference effects of the electron wave travelling along various closed orbits, oscillatory structures appear in the photodetachment cross-section. And the oscillatory structures depend on the laser polarization sensitively. Compared to the photodetachment of \(\hbox {H}^{-}\) ion inside a square microcavity, in photodetachment of \(\hbox {H}^{-}\) ion in cubical cavity the number of the closed orbits is increased and the oscillatory structure in the photodetachment cross-section becomes much more complex. Through our study, researchers can gain a deep understanding on the correspondence of the classical dynamics and the quantum mechanics. Our study may guide future experimental research in the field of the photodetachment electron dynamics inside a three-dimensional microcavity.


Photodetachment spectrum cubical microcavity negative ion 


32.30.–r 34.35.+a 32.80.Gc 32.80.Qk 42.50.Hz 



This work is supported by the National Natural Science Foundation of China (Grant No. 11374133) and Taishan scholars project of Shandong Province (ts2015110055).


  1. 1.
    H C Bryant, Phys. Rev. Lett. 58, 2412 (1987)ADSCrossRefGoogle Scholar
  2. 2.
    C Blondel, C Delsart and F Dulieu, Phys. Rev. Lett. 77, 3755 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    M L Du and J B Delos, Phys. Rev. A 38, 5609 (1988)ADSCrossRefGoogle Scholar
  4. 4.
    A R P Rau and H Wong, Phys. Rev. A 37, 632 (1988).ADSCrossRefGoogle Scholar
  5. 5.
    A D Peters and J B Delos, Phys. Rev. A 47, 3020 (1993).ADSCrossRefGoogle Scholar
  6. 6.
    Z Y Liu and D H Wang, Phys. Rev. A 55, 4605 (1997)ADSCrossRefGoogle Scholar
  7. 7.
    M L Du and J B Delos, Phys. Rev. A 38, 1896 (1988)ADSCrossRefGoogle Scholar
  8. 8.
    M L Du, Phys. Rev. A 70, 055402 (2004).ADSCrossRefGoogle Scholar
  9. 9.
    C Blondel, C Delsart and F Dulieu, Phys. Rev. Lett. 77, 3755 (1996).ADSCrossRefGoogle Scholar
  10. 10.
    C Bracher, T Kramer and M Kleber, Phys. Rev. A 67, 043601 (2003)Google Scholar
  11. 11.
    J Sjakste, A G Borisov and J P Gauyacq, Phys. Rev. Lett. 92, 156101 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    G C Yang, Y Z Zheng and X X Chi, J. Phys. B 39, 1855 (2006).ADSCrossRefGoogle Scholar
  13. 13.
    G C Yang, Y Z Zheng and X X Chi, Phys. Rev. A 73, 043413 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    D H Wang, Eur. Phys. J. D 45, 179 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    A Afaq and M L Du, J. Phys. B 40, 1309 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    H J Zhao and M L Du, Phys. Rev. A 79, 023408 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    K K Rui and G C Yang, Surf. Sci. 603, 632 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    B C Yang and M L Du, J. Phys. B 43, 035002 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    T T Tang and D H Wang, J. Phys. Chem. C 115, 20529 (2011)CrossRefGoogle Scholar
  20. 20.
    Y Han, L F Wang, S Y Ran and G C Yang, Physica B 405, 3082 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    K Y Huang and D H Wang, J. Phys. Chem. C 114, 8958 (2010)Google Scholar
  22. 22.
    D H Wang, J. Appl. Phys. 109, 014113 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    D H Wang, S S Wang and T T Tang, J. Phys. Soc. Jpn 80, 094301 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    M Haneef, I Ahmad, A Afaq and A Rahman, J. Phys. B 44, 195004 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    D H Wang, S S Li and H F Mu, J. Phys. Soc. Jpn 81, 074301 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    D H Wang, Curr. Appl. Phys. 11, 1228 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    H J Zhao and M L Du, Phys. Rev. E 84, 016217 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    P Hansen, K A Mitchell and J B Delos, Phys. Rev. E 73, 066226 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    J Novick, M L Keeler, K J Giefer and J B Delos, Phys. Rev. E 85, 016205 (2012).ADSCrossRefGoogle Scholar
  30. 30.
    J Novick and J B Delos, Phys. Rev. E 85, 016206 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    D H Wang, S S Li, Y H Wang and H F Mu, J. Phys. Soc. Jpn 81, 114301 (2012)Google Scholar
  32. 32.
    D H Wang, S Liu, S S Li and Y H Wang, Chin. Phys. B 22, 073401 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    D H Wang, Chin. J. Phys. 52, 138 (2014)Google Scholar
  34. 34.
    Z G Liu, W L Liu and H J Zhao, Acta. Phys. Sinica 64, 163202 (2015)Google Scholar
  35. 35.
    M Kaur, B Arora and M Mian, Pramana – J. Phys. 86, 31 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    D H Wang, Y J Yu and S L Lin, Chin. Opt. Lett. 4, 311 (2006)ADSGoogle Scholar

Copyright information

© Indian Academy of Sciences 2017

Authors and Affiliations

  • De-Hua Wang
    • 1
  • Pang-Zhi Huan
    • 1
  • Ke-Zheng Zhuang
    • 1
  • Yu-Feng Li
    • 1
  • Lei Xie
    • 1
  1. 1.School of Physics and Optoelectronic EngineeringLudong UniversityYantaiChina

Personalised recommendations