Pramana

, 88:34 | Cite as

Implementation of a new memristor-based multiscroll hyperchaotic system

Article

Abstract

In this paper, a new type of flux-controlled memristor model with fifth-order flux polynomials is presented. An equivalent circuit which realizes the action of higher-order flux-controlled memristor is also proposed. We use the memristor model to establish a memristor-based four-dimensional (4D) chaotic system, which can generate three-scroll chaotic attractor. By adjusting the system parameters, the proposed chaotic system performs hyperchaos. Phase portraits, Lyapunov exponents, bifurcation diagram, equilibrium points and stability analysis have been used to research the basic dynamics of this chaotic system. The consistency of circuit implementation and numerical simulation verifies the effectiveness of the system design.

Keywords

Memristor hyperchaos three-scroll chaotic attractor circuit implementation. 

PACS Nos

05.40.Jc 05.45.Pq 

References

  1. [1]
    L O Chua, IEEE Trans. Circuit Theory CT-18(5), 507 (1971)CrossRefGoogle Scholar
  2. [2]
    D B Strukov, Nature 453, 80 (2008)ADSCrossRefGoogle Scholar
  3. [3]
    M Itoh, Int. J. Bifurcat. Chaos 18(11), 3183 (2008)CrossRefGoogle Scholar
  4. [4]
    B Muthuswamy, IETE Technical Rev. 26(6), 415 (2009)Google Scholar
  5. [5]
    B Muthuswamy, Int. J. Bifurcat. Chaos 20(5), 1335 (2010)CrossRefGoogle Scholar
  6. [6]
    B C Bao, Chin. Phys. Lett. 27(7), 070504 (2010)ADSGoogle Scholar
  7. [7]
    B C Bao, Chin. Phys. B 20(12), 120502 (2011)CrossRefGoogle Scholar
  8. [8]
    B C Bao, Chin. Phys. B 19(3), 030510 (2010)Google Scholar
  9. [9]
    B C Bao, Electron. Lett. 46(3), 228 (2010)CrossRefGoogle Scholar
  10. [10]
    B C Bao, Acta Phys. Sinica 59(6), 3785 (2010)Google Scholar
  11. [11]
    B C Bao, Acta Phys. Sinica 60(12), 120502 (2011)Google Scholar
  12. [12]
    B C Bao, Int. J. Bifurcat. Chaos 21(9), 2629 (2011)CrossRefGoogle Scholar
  13. [13]
    Z J Li, Chin. Phys. B 22(4), 040502 (2013)CrossRefGoogle Scholar
  14. [14]
    F Corinto, IEEE Trans. Circuits and Systems I: Regular Papers 58(6), 1323 (2011)MathSciNetCrossRefGoogle Scholar
  15. [15]
    L D Wang, Int. J. Bifurcat. Chaos 22(8), 1250205 (2012)CrossRefGoogle Scholar
  16. [16]
    A Buscarino, Chaos 22(2), 023136 (2012)ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    P Zhou, Nonlinear Dyn. 76, 473 (2014)CrossRefGoogle Scholar
  18. [18]
    Q D Li, Nonlinear Dyn. 79, 2295 (2015)CrossRefGoogle Scholar
  19. [19]
    H F Li, Int. J. Bifurcat. Chaos 24(7), 1450099 (2014)CrossRefGoogle Scholar
  20. [20]
    L Teng, Nonlinear Dyn. 77, 231 (2014)CrossRefGoogle Scholar
  21. [21]
    Y N Joglekar, Eur. J. Phys. 30, 661 (2009)CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2017

Authors and Affiliations

  1. 1.College of Computer Science and Electronic EngineeringHunan UniversityChangshaChina

Personalised recommendations