Skip to main content
Log in

Effects of non-extensive electrons and positive/negative dust particles on modulational instability of dust-ion-acoustic solitary waves in non-planar geometry

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The nonlinear propagation of cylindrical and spherical dust-ion-acoustic (DIA) envelope solitary waves in unmagnetized dusty plasma consisting of dust particles with opposite polarity and non-extensive distribution of electron is investigated. By using the reductive perturbation method, the modified nonlinear Schrödinger (NLS) equation in cylindrical and spherical geometry is obtained. The modulational instability (MI) of DIA waves governed by the NLS equation is also presented. The effects of different ranges of the non-extensive parameter q on the MI are studied. The growth rate of the MI is also given for different values of q. It is found that the basic features of the DIA waves are significantly modified by non-extensive electron distribution, polarity of the net dust-charge number density and non-planar geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. P K Shukla and V P Silin, Phys. Scr. 45, 508 (1992)

    Article  ADS  Google Scholar 

  2. A Barkan, N D’Angelo, and R L Merlino, Planet. Space Sci. 44, 239 (1996)

    Article  ADS  Google Scholar 

  3. P K Shukla and M Rosenberg, Phys. Plasmas 6, 1038 (1999)

    Article  ADS  Google Scholar 

  4. P K Shukla and A A Mamun, Institute of Physics Publishing Ltd, Bristol, (2002)

  5. R L Merlino and J Goree, Phys. Today 57, 32 (2004)

    Article  Google Scholar 

  6. N N Rao, P K Shukla, and M Y Yu, Planet. Space Sci. 38, 543 (1990)

    Article  ADS  Google Scholar 

  7. P K Shukla, Phys. Plasmas 8, 1791 (2001)

    Article  ADS  Google Scholar 

  8. A A Mamun and P K Shukla, IEEE Trans. Plasma Sci. 30, 720 (2002)

    Article  ADS  Google Scholar 

  9. C K Goertz, Rev. Geophys. 27, 271 (1989)

    Article  ADS  Google Scholar 

  10. P K Shukla, Phys. Plasmas 3, 702 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  11. J X Ma and J Liu, Phys. Plasmas 4, 253 (1997)

    Article  ADS  Google Scholar 

  12. A A Mamun, Astrophys. Space Sci. 268, 443 (1999)

    Article  ADS  Google Scholar 

  13. R Boström, IEEE Trans. Plasma Sci. 20, 756 (1992)

    Article  ADS  Google Scholar 

  14. P O Dovner et al, Geophys. Res. Lett. 21, 1827 (1994)

    Article  ADS  Google Scholar 

  15. M Tribeche and A Berbri, J. Plasma Phys. 74, 245 (2008)

    ADS  Google Scholar 

  16. J K Xue, Europhys. Lett. 68, 645 (2004)

    Article  ADS  Google Scholar 

  17. R A Cairns et al, Geophys. Res. Lett. 22, 2709 (1995)

    Article  ADS  Google Scholar 

  18. A A Mamun, Phys. Rev. E 55, 1852 (1997)

    Article  ADS  Google Scholar 

  19. M Horányi, G E Morfill, and E Grün, Nature 363, 144 (1993)

    Article  ADS  Google Scholar 

  20. O Havnes et al, J. Geophys. Res. 101, 10839 (1996)

    Article  ADS  Google Scholar 

  21. V E Fortov et al, J. Exp. Theor. Phys. 87, 1087 (1998)

    Article  ADS  Google Scholar 

  22. D A Mendis and M Rosenberg, Annu. Rev. Astron. Astrophys. 32, 419 (1994)

    Article  ADS  Google Scholar 

  23. O Havnes et al, Planet. Space Sci. 44, 1191 (1996)

    Article  ADS  Google Scholar 

  24. A A Mamun and P K Shukla, Phys. Rev. E 80, 037401 (2009)

    Article  ADS  Google Scholar 

  25. M R Amin, G E Morfill, and P K Shukla, Phys. Rev. E 58, 6517 (1998)

    Article  ADS  Google Scholar 

  26. R Silva, A R Plastino, and J A S Lima, Phys. Lett. A 249, 401 (1998)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M EGHBALI.

Appendix

Appendix

$$\begin{array}{@{}rcl@{}} B_{2\phi} &=& \frac{({-3k^{4}}/{\omega^{2}})+{\left( {1+\alpha s} \right)}C_{2}} {k^{2}-\omega^{2}[ {4k^{2}+{\left( {1+\alpha s}\right)}C_{2}}]},\\ B_{2u} &=&\frac{k}{\omega} B_{2\phi} +\frac{k^{3}}{2\omega^{2}},\\ B_{2n} &=&\frac{k}{\omega} B_{2u} +\frac{k^{4}}{\omega^{4}},\\ B_{0\phi} &=&\frac{2v_{\mathrm{g}} ({k^{3}}/{\omega^{3}})+v_{\mathrm{g}} ({k^{2}}/{\omega^{2}})-{v_{\mathrm{g}}^{2}}({1+\alpha s})C_{2}} {{v_{\mathrm{g}}^{2}} ({1+\alpha s})C_{1} -v_{\mathrm{g}}},\\ B_{0u} &=&\frac{1}{v_{\mathrm{g}}} \left[ {\left( {\frac{k}{\omega}}\right)^{2}+B_{0\phi}}\right],\\ B_{0n} &=&({1+\alpha s})C_{1} B_{0\phi} +2({1+\alpha s})C_{2}. \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

EGHBALI, M., FAROKHI, B. & ESLAMIFAR, M. Effects of non-extensive electrons and positive/negative dust particles on modulational instability of dust-ion-acoustic solitary waves in non-planar geometry. Pramana - J Phys 88, 15 (2017). https://doi.org/10.1007/s12043-016-1309-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-016-1309-4

Keywords

PACS Nos

Navigation