Skip to main content
Log in

Folding model analysis of the nucleus–nucleus scattering based on Jacobi coordinates

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This paper presents the results of scattering of 16O+209Bi interaction near the Coulomb barrier. The interaction potential between two nuclei is calculated using the double folding model with the effective nucleon–nucleon (NN) interaction. The calculations of the exchange part of the interaction were assumed to be of finite-range and the density dependence of the NN interaction is accounted for. Also the results are compared with the zero-range approximation. All these calculations are done using the wave functions of the two colliding nuclei in place of their density distributions. The wave functions are obtained by the D-dimensional wave equation using the hyperspherical calculations on the basis of Jacobi coordinates. The numerical results for the interaction potential and the differential scattering are in good agreement with the previous works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. V M Vilalba and C Rojas, Phys. Rev. A 71, 052101 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  2. V M Vilalba and C Rojas, Phys. Lett. A 362, 21 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  3. A Arda and R Sever, J. Math. Phys. 52, 092101 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  4. O Aydoğdu, A Arda and R Sever, J. Math. Phys. 53, 042106 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  5. H Hassanabadi, S Zarrinkamar and E Maghsoodi, Phys. Lett. B 718, 678 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  6. H Hassanabadi, E Maghsoodi, N Salehi, A N Ikot and S Zarrinkamar, Eur. Phys. J. Plus 128, 127 (2013)

    Article  Google Scholar 

  7. B Sinha, Phys. Rep. C 20, 1 (1975)

    Article  ADS  Google Scholar 

  8. G Bertsch, J Borysowicz, H McManus and W G Love, Nucl. Phys. A 284, 399 (1977)

    Article  ADS  Google Scholar 

  9. G R Satchler and W G Love, Phys. Rep. 55, 184 (1979)

    Article  ADS  Google Scholar 

  10. C H Dasso and G Pollarolo, Phys. Rev. C 68, 054604 (2003)

    Article  ADS  Google Scholar 

  11. I I Gontchar, D J Hinde, M Dasgupta and J O Newton, Phys. Rev. C 69, 024610 (2004)

    Article  ADS  Google Scholar 

  12. I I Gontchar and M V Chushnyakova, Comp. Phys. Commun. 181, 168 (2010)

    Article  ADS  Google Scholar 

  13. M Aygun, Chin. J. Phys. 53, 080301 (2015)

    Google Scholar 

  14. Dao T Khoa, W von Oertzen and H G Bohlen, Phys. Rev. C 49, 1652 (1994)

    Article  ADS  Google Scholar 

  15. J W Negele and D Vautherin, Phys. Rev. C 5, 1472 (1972)

    Article  ADS  Google Scholar 

  16. X Campi and A Bouyssy, Phys. Lett. B 73, 263 (1978)

    Article  ADS  Google Scholar 

  17. Dao T Khoa, Phys. Rev. C 63, 034007 (2001)

    Article  ADS  Google Scholar 

  18. M Ismail and Kh A Ramadan, J. Phys. G 26, 1621 (2000)

    Article  ADS  Google Scholar 

  19. G Bertsch, J Borysowicz, H McManus and W G Love, Nucl. Phys. A 284, 399 (1977)

    Article  ADS  Google Scholar 

  20. N Anantaraman, H Toki and G F Bertsch, Nucl. Phys. A 398, 269 (1983)

    Article  ADS  Google Scholar 

  21. Dao T Khoa and W von Oertzen, Phys. Lett. B 304, 8 (1993)

    Article  ADS  Google Scholar 

  22. Dao T Khoa, G R Satchler and W von Oertzen, Phys. Rev. C 56, 954 (1997)

    Article  ADS  Google Scholar 

  23. M Fabre de la Ripelle, Ann. Phys. (N.Y.) 147, 281 (1983)

    Article  ADS  Google Scholar 

  24. O I Tolstikhin, V N Ostrovsky and H Nakamura, Phys. Rev. Lett. 80, 41 (1998)

    Article  ADS  Google Scholar 

  25. M M Giannini, E Santopinto and A Vassallo, Nucl. Phys. A 699, 308 (2002)

    Article  ADS  Google Scholar 

  26. S H Dong, Wave equations in higher dimensions (Springer Netherlands, 2011)

  27. J L Ballot and M Fabre de la Ripelle, Ann. Phys. (N.Y.) 127, 62 (1980)

    Article  ADS  Google Scholar 

  28. A A Rajabi, Few-body systems 37, 197 (2005)

    Article  ADS  Google Scholar 

  29. V G J Stoks, R A M Klomp, M C M Rentmeester and J J de Swart, Phys. Rev. C 48, 792 (1993)

    Article  ADS  Google Scholar 

  30. M Hamzavi, M Movahedi, K E Thylwe and A A Rajabi, Chin. Phys. Lett. 29, 080302 (2012)

    Article  ADS  Google Scholar 

  31. S H Dong, Factorization method in quantum mechanics (Springer, 2007)

  32. R Navarro Pérez, J E Amaro and E Ruiz Arriola, Phys. Rev. C 88, 024002 (2013)

    Article  ADS  Google Scholar 

  33. L D Landau and E M Lifshitz, Course of theoretical physics 1: Mechanics, 3 rd edn (Pergamon, 1976)

  34. M Abramowitz and I A Stegun (Eds), Handbook of mathematical functions with formulas, graphs and mathematical tables (Courier Corporation, New York, 1965) Vol. 55, p. 1064

  35. W Qiang, K Li and W Chen, J. Phys. A: Math. Theor. 42, 205306 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  36. E Vulgaris, L Grodzins, S G Steadman and R Ledoux, Phys. Rev. C 33, 2017 (1986)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the referee for the invaluable suggestions that have greatly helped them to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F PAKDEL.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

PAKDEL, F., RAJABI, A.A. & NICKHAH, L. Folding model analysis of the nucleus–nucleus scattering based on Jacobi coordinates. Pramana - J Phys 87, 90 (2016). https://doi.org/10.1007/s12043-016-1295-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-016-1295-6

Keywords

PACS Nos

Navigation