Skip to main content
Log in

Relativistic quantum correlations in bipartite fermionic states

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The influences of relative motion, the size of the wave packet and the average momentum of the particles on different types of correlations present in bipartite quantum states are investigated. In particular, the dynamics of the quantum mutual information, the classical correlation and the quantum discord on the spin correlations of entangled fermions are studied. In the limit of small average momentum, regardless of the size of the wave packet and the rapidity, the classical and the quantum correlations are equally weighted. On the other hand, in the limit of large average momentum, the only correlations that exist in the system are the quantum correlations. For every value of the average momentum, the quantum correlations maximize at an optimal size of the wave packet. It is shown that after reaching a minimum value, the revival of quantum discord occurs with increasing rapidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. D Bouwmeester, A Ekert and A Zeilinger, The physics of quantum information (Springer-Verlag, Berlin, 2000)

    Book  MATH  Google Scholar 

  2. S Weinberg, The quantum theory of fields (Cambridge University Press, Cambridge, 1996)

    Book  MATH  Google Scholar 

  3. K Bradler, P Hayden and P Panangaden, Commun. Math. Phys. 312, 361 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  4. J Hu and H Yu, Phys. Rev. A 91, 012327 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  5. P M Alsing, I F Schuller, R B Mann and T E Tessier, Phys. Rev. A 74, 032326 (2006)

    Article  ADS  Google Scholar 

  6. S Khan and M K Khan, J. Phys. A: Math. Theor. 44, 045305 (2011)

    Article  ADS  Google Scholar 

  7. S Khan, Open Syst. Inf. Dyn. 19, 1250013 (2012)

    Article  MathSciNet  Google Scholar 

  8. A G S Landulfo and G E A Matsas, Phys. Rev. A 79, 044103 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  9. A G S Landulfo and A C Torres, Phys. Rev. A 87, 042339 (2013)

    Article  ADS  Google Scholar 

  10. K Bradler, P Hayden and P Panangaden, J. High Energy Phys. 08, 074 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  11. E M Martinez and I Fuentes, Phys. Rev. A 83, 052306 (2011)

    Article  ADS  Google Scholar 

  12. S Khan, N A Khan and M K Khan, Commun. Theor. Phys. 61, 281 (2014)

    Article  Google Scholar 

  13. N Friis, P Kohler, E M Martinez and R A Bertlmann, Phys. Rev. A 84, 062111 (2011)

    Article  ADS  Google Scholar 

  14. J Wanga, Q Pan, S Chena and J Jing, Phys. Lett. B 677, 22186 (2009)

    Google Scholar 

  15. A G S Landulfo and G E A Matsas, Phys. Rev. A 80, 032315 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  16. S Khan, Ann. Phys. 348, 270 (2014)

    Article  ADS  Google Scholar 

  17. Yan Peng and Qiyuan Pan, J. High Energy Phys. 06, 011 (2014)

    Article  Google Scholar 

  18. Q Pan and J Jing, Phys. Rev. D 78, 065015 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  19. E M Martinez and J Leon, Phys. Rev. A 81, 032320 (2010)

    Article  ADS  Google Scholar 

  20. A Peres, P F Scudo and D R Terno, Phys. Rev. Lett. 88, 230402 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  21. R M Gingrich and C Adami, Phys. Rev. Lett. 89, 270402 (2002)

    Article  Google Scholar 

  22. L Lamata, M A M Delgado and E Solano, Phys. Rev. Lett. 97, 250502 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  23. D Matsukevich, Nature Phys. 9, 389 (2013)

    Article  ADS  Google Scholar 

  24. H Krauter, D Salart, C A Muschik, J M Petersen, H Shen , T Fernholz and E S Polzik, Nature Phys. 9, 400 (2013)

    Article  ADS  Google Scholar 

  25. V Giovannetti, S Lloyd and L Maccone, Nature 412, 417 (2001)

    Article  ADS  Google Scholar 

  26. A Peres and P F Scudo, Phys. Rev. Lett. 86, 4160 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  27. E Bagan, M Baig and R M Tapia, Phys. Rev. A 70, 030301 (2004)

    Article  ADS  Google Scholar 

  28. N H Lindner, A Peres and D R Terno, Phys. Rev. A 68, 042308 (2003)

    Article  ADS  Google Scholar 

  29. G Chiribella, G D’Ariano, P Perinotti and M Sacchi, Phys. Rev. Lett. 93, 180503 (2004)

    Article  ADS  Google Scholar 

  30. S Wiesner, SIGACT News 15, 78 (1983)

    Article  Google Scholar 

  31. A K Ekert, Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  32. P K Lam and T C Ralph, Nat. Photon. 7, 350 (2013)

    Article  ADS  Google Scholar 

  33. J Barrett, R Colbeck and A Kent, Phys. Rev. Lett. 110, 010503 (2013)

    Article  ADS  Google Scholar 

  34. C H Bennett and S J Wiesner, Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  35. A Datta, A Shaji and C M Caves, Phys. Rev. Lett. 100, 050502 (2008)

    Article  ADS  Google Scholar 

  36. M Gu, H M Chrzanowski, S M Assad, T Symul, K Modi, T C Ralph, V Vedral and P K Lam, Nat. Phys. 8, 671 (2012)

    Article  Google Scholar 

  37. V Madhok and A Datta, Phys. Rev. A 83, 032323 (2011)

    Article  ADS  Google Scholar 

  38. D Cavalcanti, L Aolita, S Boixo, K Modi, M Piani and A Winter, Phys. Rev. A 83, 032324 (2011)

    Article  ADS  Google Scholar 

  39. J Wang, J Deng and J Jing, Phys. Rev. A 81, 052120 (2010)

    Article  ADS  Google Scholar 

  40. E G Brown, K Cormier, E Martin-Martinez and R B Mann, Phys. Rev. A 86, 032108 (2012)

    Article  ADS  Google Scholar 

  41. J Doukas, E G Brown, A Dragan and R B Mann, Phys. Rev. A 87, 012306 (2013)

    Article  ADS  Google Scholar 

  42. H Ollivier and W H Zurek, Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  43. W H Zurek, Rev. Mod. Phys. 75, 715 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  44. L Henderson and V J Vedral, Phys. Rev. A 34, 6899 (2001)

    MathSciNet  Google Scholar 

  45. F R Halpern, Special relativity and quantum mechanics (Prentice-Hall, Englewood Cliffs, NJ, 1968)

    MATH  Google Scholar 

  46. P L Saldanha and V Vedral, Phys. Rev. A 85, 062101 (2012)

    Article  ADS  Google Scholar 

  47. K Bradler, E Castro-Ruiz and E Nahmad-Achar, Phys. Rev. A 90, 022308 (2014)

    Article  ADS  Google Scholar 

  48. A Aiello and J P Woerdman, Phys. Rev. A 70, 023808 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S KHAN.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KHAN, S., KHAN, N.A. Relativistic quantum correlations in bipartite fermionic states. Pramana - J Phys 87, 61 (2016). https://doi.org/10.1007/s12043-016-1268-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-016-1268-9

Keywords

PACS Nos

Navigation