Skip to main content
Log in

Hermite-distributed approximating functional-based formulation of multiconfiguration time-dependent Hartree method: A case study of quantum tunnelling in a coupled double-well system

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We propose a variant of the multiconfiguration time-dependent Hartree (MCTDH) method within the framework of Hermite-distributed approximating functional (HDAF) method. The discretized Hamiltonian is a highly banded Toeplitz matrix which significantly reduces computational cost in terms of both storage and number of operations. The method proposed is employed to carry out the study of tunnelling dynamics of two coupled double well oscillators. We have calculated the orthogonality time τ, which is a measure of the time interval for an initial state to evolve into its orthogonal state. It is observed that the coupling has a significant effect on τ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. R P Bell, Tunnel effect in chemistry (Chapman and Hall, London, 1980)

  2. T Miyazaki (Ed.), Atom tunneling phenomena in physics, chemistry and biology (Springer, Berlin, 2003) and references cited therein

  3. R E Waytt and J Z H Zhang (Eds) Dynamics of molecules and chemical reactions (Dekker, New York, 1996)

  4. D J Tannor, Introduction to quantum mechanics: A time-dependent perspective (Univ. Sci. Books, Sausalito, California, 2007) Chapter 11

  5. D K Hoffman, N Nayar, O A Sharafeddin and D J Kouri, J. Phys. Chem. 95, 8299 (1991)

    Article  Google Scholar 

  6. D K Hoffman and D J Kouri, J. Phys. Chem. 96, 9631 (1992)

    Article  Google Scholar 

  7. D K Hoffman, M Arnold and D J Kouri, J. Phys. Chem. 96, 6539 (1992)

    Article  Google Scholar 

  8. Y Huang, D J Kouri, A Arnold, T L Marchioro II and D K Hoffmann, Comput. Phys. Commun. 80, 1 (1994)

    Article  ADS  Google Scholar 

  9. D K Hoffman, T L Marchioro, M Arnold, Y H Huang, W Zhu and D J Kouri, J. Math. Chem. 20, 117 (1996)

    Article  Google Scholar 

  10. S S Iyengar and J Jakowski, J. Chem. Phys. 122, 114105 (2005)

    Article  ADS  Google Scholar 

  11. H -D Meyer, U Manthe and L S Cederbaum, Chem. Phys. Lett. 165, 73 (1990)

    Article  ADS  Google Scholar 

  12. H Wang and M Thoss, J. Chem. Phys. 119, 1289 (2003)

    Article  ADS  Google Scholar 

  13. M H Beck, A Jäckle, G A Worth and H -D Meyer, Phys. Rep. 324, 1 (2000)

    Article  ADS  Google Scholar 

  14. G A Worth, H -D Meyer, H Köppel, L S Cederbaum and I Burghardt, Int. Rev. Phys. Chem. 27, 569 (2008)

    Article  Google Scholar 

  15. K Maji and S P Bhattacharyya, Pramana – J. Phys. 62, L983 (2004)

    Article  ADS  Google Scholar 

  16. D Muganai, A Ranfagni and L Ronchi, Phys. Lett. A 247, 281 (1998)

    Article  ADS  Google Scholar 

  17. G K Ivanov, M A Kozhushner and L I Trakhtenberg, J. Chem. Phys. 113, 1992 (2000)

    Article  ADS  Google Scholar 

  18. C K Mondal, K Maji and S P Bhattacharyya, Int. J. Quant. Chem. 94, 57 (2003)

    Article  Google Scholar 

  19. K Maji and S P Bhattacharyya, Chem. Phys. Lett. 424, 218 (2006)

    Article  ADS  Google Scholar 

  20. N Margolus and L B Levitin, Physica D 120, 188 (1998)

    Article  ADS  Google Scholar 

  21. V Giovannetti, S Lloyd and L Maccone, Phys. Rev. A 67, 052109 (2003)

    Article  ADS  Google Scholar 

  22. Y Huang, W Zhu, D J Kouri, D K Hoffman, Chem. Phys. Lett. 206, 96 (1993); 213, 209(E) (1993)

  23. D J Kouri, M Arnold and D K Hoffmann, Chem. Phys. Lett. 203, 166 (1993)

    Article  ADS  Google Scholar 

  24. U Manthe, J. Chem. Phys. 105, 6989 (1996)

    Article  ADS  Google Scholar 

  25. R van Harrevelt and U Manthe, J. Chem. Phys. 121, 5623 (2004)

    Article  ADS  Google Scholar 

  26. R van Harrevelt and U Manthe, J. Chem. Phys. 123, 064106 (2005)

    Article  ADS  Google Scholar 

  27. U Manthe, J. Chem. Phys. 130, 054109 (2009)

    Article  ADS  Google Scholar 

  28. J Frenkel, Wave mechanics (Clarendon Press, Oxford, 1934)

Download references

Acknowledgement

The author sincerely thanks Department of Chemistry, Bidhannagar College, for providing computational facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to KAUSHIK MAJI.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MAJI, K. Hermite-distributed approximating functional-based formulation of multiconfiguration time-dependent Hartree method: A case study of quantum tunnelling in a coupled double-well system. Pramana - J Phys 87, 34 (2016). https://doi.org/10.1007/s12043-016-1243-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-016-1243-5

Keywords

PACS No.

Navigation