Skip to main content
Log in

Effects of particle size and laser wavelength on heating of silver nanoparticles under laser irradiation in liquid

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Laser energy absorption results in significant heating of metallic nanoparticles and controlling the heating of nanoparticles is one of the essential stages of selective cell targeting. It is necessary to note that the laser action should be done by laser pulses with a wavelength that is strongly absorbed by the particles and it is important to select wavelengths that are not absorbed by the medium. Laser pulse duration must be chosen sufficiently short to minimize heat flow emitted from absorbing particles. Numerical calculations based on Mie theory were used to obtain the effect of laser wavelength and particle size on absorption factor for colloidal silver nanoparticles with radii between 5 and 50 nm. Calculations for acquiring temperatures under irradiations of pulsed KrF laser and pulsed Nd:YAG laser were performed. We showed that for low wavelengths of the laser, smaller nanoparticles have larger absorption efficiency compared to larger nanoparticles and in high wavelengths, temperature of all particles increased in the same way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Sh Hashimoto, D Werner and T Uwada, J. Photochem. Photobiol. C: Photochem. Rev. 13, 28 (2012)

    Article  Google Scholar 

  2. R Ellis-Behnke and J B Jonas, Acta Ophthalmol. 89(2), 108 (2011)

    Article  Google Scholar 

  3. G A Sotiriou, Nanomedicine Nanobiotechnol. 5, 19 (2013)

    Article  Google Scholar 

  4. A Rastar, M E Yazdanshenas, A Rashidi and S M Bidoki, J. Engineered Fibers Fabrics 8, 85 (2013)

    Google Scholar 

  5. X Huang and M A El-Sayed, J. Adv. Res. 1, 13 (2010)

    Article  Google Scholar 

  6. M G Blaber, M D Arnold, N Harris, M J Ford and M B Cortie, Physica B 394, 184 (2007)

    Article  ADS  Google Scholar 

  7. P Spinelli and A Polman, Opt. Soc. Am. A 20, 651 (2012)

    Google Scholar 

  8. C I Yeo, J H Choi, J B Kim, J C Lee and Y T Lee, Opt. Mater. Express 4, 346 (2014)

    Article  Google Scholar 

  9. M Honda, Y Saito, N I Smith, K Fujita and S Kawata, Opt. Express 19, 12375 (2011)

    Article  ADS  Google Scholar 

  10. S Honary, K Ghajar, P Khazaeli and P Shalchian, Tropical J. Pharmaceutical Res. 10(1), 69 (2011)

    Google Scholar 

  11. Y Li, T Verbiest, R Strobbe and Ivo F J Vankelecom, J. Mater. Chem. A 2, 3182 (2014)

    Article  Google Scholar 

  12. J J Mock, M Barbic, D R Smith, D A Schultz and S Schultz, J. Chem. Phys. 116, 6755 (2002)

    Article  ADS  Google Scholar 

  13. M K Rai, S D Deshmukh, A P Ingle and A K Gade, J. Appl. Microbiol. 112, 841 (2012)

    Article  Google Scholar 

  14. R D Lima, A B Seabra and N Durán, Appl. Toxicol. 32, 867 (2012)

    Article  Google Scholar 

  15. J S Kim, E Kuk, K N Yu, J h Kim, S J Park, H J Lee, S H Kim, Y K Park, Y H Park, C Y Hwang, Y K Kim, Y S Lee, D H Jeong and M H Cho, Nanomedicine 3, 95 (2007)

    Google Scholar 

  16. A O Govorov and H H Richardson, Nanotoday 2, 30 (2007)

    Article  Google Scholar 

  17. V Amendola, O M Bakr and F Stellacci, Plasmonics 5, 85 (2010)

    Article  Google Scholar 

  18. C M Pitsillides, E K Joe, X Wei, R R Anderson and C P Lin, Biophys. J. 84(6), 4023 (2003)

    Article  Google Scholar 

  19. A N Volkov, Ca Sevilla and L V Zhigilei, Appl. Surf. Sci. 253, 6394 (2007)

    Article  ADS  Google Scholar 

  20. V P Zharov, K E Mercer, E N Galitovskaya and E N Smeltzer, Biophys. J. 90(2), 619 (2005)

    Google Scholar 

  21. J A Copland, M Eghtedari, V L Popov, N Kotov , N Mamedova, M Motamedi and A A Oraevsky, Mol. Imaging Biol. 6(5), 341 (2004)

    Article  Google Scholar 

  22. A G Skirtach, A M Javier, O Kereft, K Köhler, A P Alberola, H Möhwald, W J Parak and A G B Sukhorukov, Angewandte Chemie International Edition 45, 4612 (2006)

    Article  Google Scholar 

  23. P K Jain, X Huang, I H El Sayed and M A El Sayed, Plasmonics 2, 107 (2007)

    Article  Google Scholar 

  24. V K Pustovalov, Chem. Phys. 308, 103 (2005)

    Article  ADS  Google Scholar 

  25. A Kyrsting, P M Bendix and L B Oddershede, Optical Trapping and Optical Micromanipulation IX 8458, 84580X (2012)

    Article  Google Scholar 

  26. C F Bohren and D R Huffman, Absorption and scattering of light by small particles (Wiley, New York, 1983)

    Google Scholar 

  27. V K Pustovalov and V A Babenko, Laser Phys. Lett. 10, 516 (2004)

    Article  ADS  Google Scholar 

  28. M Attarian Shandiza, A Safaeia, S Sanjabia and Z H Barberb, Solid State Commun. 145, 432 (2008)

    Article  ADS  Google Scholar 

  29. G K Goswami and K Kar Nanda, J. Phys. Chem. 114, 14327 (2010)

    Article  Google Scholar 

  30. S C Vanithakumari and K K Nanda, J. Phys. Chem. B 110(2), 1033 (2006)

    Article  Google Scholar 

  31. K Kar Nanda, Phys. Lett. A 376, 1647 (2012)

    Article  ADS  Google Scholar 

  32. K K Nanda, Pramana – J. Phys. 72(4), 617 (2009)

    Article  ADS  Google Scholar 

  33. Bisheng Wu, P Tillman and J M Hill, Nanosci. Nanotechnol. ICONN 06, International Conference (2006)

  34. W H Qi and M P Wang, J. Mater. Sci. Lett. 21, 1743 (2002)

    Article  Google Scholar 

  35. C R M Wronski, British J. Appl. Phys. 18, 1731 (1967)

    Article  ADS  Google Scholar 

  36. A Safaei, M Attarian Shandiz, S Sanjabia and Z H Barberb, J. Phys. Chem. C 112, 99 (2008)

    Article  Google Scholar 

  37. W H Qi and M P Wang, Mater. Chem. Phys. 88, 280 (2004)

    Article  Google Scholar 

  38. R John Bosco Balaguru and B G Jeyaprakash, Melting points, mechanical properties of nanoparticles and Hall Petch relationship for nanostructured materials, NPTEL

  39. W H Qi, Physics B 368, 46 (2005)

    Article  ADS  Google Scholar 

  40. M Mirjalili and J Vahdati-Khaki, J. Phys. Chem. Solids 69, 2116 (2008)

    Article  ADS  Google Scholar 

  41. A Jentysm, Phys. Chem. Chem. Phys. 1, 4059 (1999)

    Article  Google Scholar 

  42. G C Bond, Platinum Metals Rev. 19(4), 126 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HODA MAHDIYAN MOMEN.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MOMEN, H.M. Effects of particle size and laser wavelength on heating of silver nanoparticles under laser irradiation in liquid. Pramana - J Phys 87, 26 (2016). https://doi.org/10.1007/s12043-016-1233-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-016-1233-7

Keywords

PACS Nos

Navigation