Skip to main content
Log in

Nonlinear Rayleigh–Taylor instability of the cylindrical fluid flow with mass and heat transfer

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The nonlinear Rayleigh–Taylor stability of the cylindrical interface between the vapour and liquid phases of a fluid is studied. The phases enclosed between two cylindrical surfaces coaxial with mass and heat transfer is derived from nonlinear Ginzburg–Landau equation. The F-expansion method is used to get exact solutions for a nonlinear Ginzburg–Landau equation. The region of solutions is displayed graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. D S Lee, Phys. Scr. 67, 420 (2003)

    Article  ADS  Google Scholar 

  2. D Y Hsieh, Phys. Fluids 21, 745 (1978)

    Article  ADS  Google Scholar 

  3. M K Awasthi, R Asthana, and G S Agrawal, Int. J. Heat Mass Transfer 78, 251 (2014)

    Article  Google Scholar 

  4. D Y Heish, Trans. ASME 94(D), 156 (1972)

    Google Scholar 

  5. K A Khodaparast, M Kawaji, and B N Antar, Phys. Fluids 7, 359 (1994)

    Article  Google Scholar 

  6. D S Lee, J. Phys. A: Math. Gen. 38, 2803 (2005)

    Article  ADS  Google Scholar 

  7. M K Awasthi and G S Agrawal, Int. J. Appl. Math. Mech. 7(12), 73 (2011)

    Google Scholar 

  8. R Asthana and G S Agrawal, Physica A 382, 389 (2007)

    Article  ADS  Google Scholar 

  9. H J Kim, S J Kwon, J C Padrino, and T Funada, J. Phys. A Math. Theor. 41(33), 335205 (2008)

    Article  MathSciNet  Google Scholar 

  10. A H Khater, D K Callebaut, W Malfliet, and A R Seadawy, Phys. Scr. 64, 533 (2001)

    Article  ADS  Google Scholar 

  11. A H Khater, D K Callebaut, and A R Seadawy, Phys. Scr. 67, 340 (2003)

    Article  ADS  Google Scholar 

  12. A H Khater, D K Callebaut, M A Helal, and A R Seadawy, Eur. Phys. J. D 39, 237 (2006)

    Article  ADS  Google Scholar 

  13. A H Khater, D K Callebaut, M A Helal, and A R Seadawy, Phys. Scr. 74, 384 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  14. M K Awasthi, Int. Commun. Heat Mass Transfer 56, 79 (2014)

    Article  Google Scholar 

  15. A H Khater, D K Callebaut, and A R Seadawy, Phys. Scr. 62, 353 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  16. R Asthana and G S Agrawal, Int. J. Eng. Sci. 48, 1925 (2010)

    Article  MathSciNet  Google Scholar 

  17. S Chandrasekhar, Hydrodynamic and hydromagnetic stability (Dover Publications, New York, 1981)

    MATH  Google Scholar 

  18. P H Roberts, Astrophys. J. 137, 679 (1963)

    Article  ADS  Google Scholar 

  19. S K Malik and M Singh, Astrophys. Space Sci. 109, 231 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  20. A R Seadawy, Physica A 439, 124 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  21. K Zakaria, Physica A 327, 221 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  22. A R Seadawy, Comp. Math. Appl. 62, 3741 (2011)

    Article  MathSciNet  Google Scholar 

  23. A R Seadawy, Appl. Math. Lett. 25, 687 (2012)

    Article  MathSciNet  Google Scholar 

  24. A R Seadawy and K El-Rashidy, Math. Comp. Model. 57, 1371 (2013)

    Article  MathSciNet  Google Scholar 

  25. A R Seadawy, Comp. Math. Appl. 62, 3741 (2011)

    Article  MathSciNet  Google Scholar 

  26. A R Seadawy, Comp. Math. Appl. 70, 345 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This work was supported by the Deanship of Scientific Research, Taibah University, KSA, 2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ALY R SEADAWY.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

SEADAWY, A.R., EL-RASHIDY, K. Nonlinear Rayleigh–Taylor instability of the cylindrical fluid flow with mass and heat transfer. Pramana - J Phys 87, 20 (2016). https://doi.org/10.1007/s12043-016-1222-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-016-1222-x

Keywords

Pacs Nos

Navigation