Skip to main content
Log in

Neutrino mass bounds from neutrinoless double beta-decays and cosmological probes

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We investigate the way the total mass sum of neutrinos can be constrained from the neutrinoless double beta-decay and cosmological probes with cosmic microwave background (CMBR), large-scale structures including 2dFGRS and SDSS datasets. First we discuss, in brief, the current status of neutrino mass bounds from neutrino beta decays and cosmic constraint within the flat ΛCMD model. In addition, we explore the interacting neutrino dark-energy model, where the evolution of neutrino masses is determined by quintessence scalar field, which is responsible for cosmic acceleration. Assuming the flatness of the Universe, the constraint we can derive from the current observation is \(\sum m_{\nu } < 0.87\) eV at 95% confidence level, which is consistent with \(\sum m_{\nu } < 0.68\) eV in the flat ΛCDM model without Lyman alpha forest data. In the presence of Lyman- α forest data, interacting dark-energy models prefer a weaker bound \(\sum m_{\nu } < 0.43\) eV to \(\sum m_{\nu } < 0.17\) eV (Seljark et al). Finally, we discuss the future prospect of the neutrino mass bound with weak-lensing effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. J Bonne et al, Nuch. Phys. B (Proc. Suppl.) 91, 273 (2001)

    Article  ADS  Google Scholar 

  2. Ch Weinheimer, Nucl. Phys. B (Proc. Suppl.) 118, 279 (2003)

    Article  ADS  Google Scholar 

  3. V A Rodin, A Faessler, F Simkovic and P Vogel, Phys. Rev. C 68, 044302 (2003)

    Article  ADS  Google Scholar 

  4. Heidelberg-Moscow Collaboration: L Baudis et al, Phys. Rev. Lett. 83, 41 (1999)

  5. IGEX Collaboration: C E Aalseth et al, Phys. Rev. D 65, 092007 (2002); Phys. Rev. D 70, 078302 (2004)

  6. G Mangano et al, Nucl. Phys. B 729, 221 (2005)

    Article  ADS  Google Scholar 

  7. J F Beacom, N F Bell and S Dodelson, Phys. Rev. Lett. 93, 121302 (2004)

    Article  ADS  Google Scholar 

  8. S Dodelson, A Melchiorri and A Slasar, Phys. Rev. Lett. 97, 04031 (2006)

    Google Scholar 

  9. S Hannestad, J. Cosmol. Astropart. Phys. 05, 004 (2003)

    Article  ADS  Google Scholar 

  10. E Pierpaoli, Mon. Not. R. Astron. Soc. 342, L63 (2003)

    Article  ADS  Google Scholar 

  11. S Hannestad, J. Cosmol. Astropart. Phys. 0502, 011 (2005) arXiv:astro-ph/0411475

    Article  ADS  Google Scholar 

  12. A Slosar, Phys. Rev. D 73, 123501 (2006)

    Article  ADS  Google Scholar 

  13. M Fukugita, K Ichikawa, M Kawasaki and O Lahav, Phys. Rev. D 74, 027302 (2006)

    Article  ADS  Google Scholar 

  14. O Elgaroy et al, Phys. Rev. Lett. 89, 061310 (2002) O Elgaroy and O Lahav, J. Cosmol. Astropart. Phys. 0304, 004 (2003)

  15. A G Sanchez et al, Mon. Not. R. Astron. Soc. 366, 189 (2006)

    Article  ADS  Google Scholar 

  16. S Hannestad, J. Cosmol. Astropart. Phys. 0305, 004 (2003)

    Article  ADS  Google Scholar 

  17. V Barger, D Marfatia and A Tregre, Phys. Lett. B 595, 55 (2004)

    Article  ADS  Google Scholar 

  18. WMAP Collaboration: D N Spergel et al, astro-ph/ 0603449

  19. A Goodbar, S Hannestad, E Mortsell and H Tu, J. Cosmol. Astropart. Phys. 06, 019 (2006)

    Article  ADS  Google Scholar 

  20. U Seljak, A Slosar and P McDonald, J. Cosmol Astropart. Phys. 10, 014 (2006)

    Article  ADS  Google Scholar 

  21. W Hu, D J Eisenstein and M Tegmark, Phys. Rev. Lett. 80, 5255 (1998) arXiv:astro-ph/9712057

    Article  ADS  Google Scholar 

  22. J R Bond, G Efstathiou and J Silk, Phys. Rev. Lett. 45, 1980 (1980)

    Article  ADS  Google Scholar 

  23. K Ichikawa, M Fukugita and M Kawasaki, Phys. Rev. D 71, 043001 (2005)

    Article  ADS  Google Scholar 

  24. K Ichiki and Y-Y Keum, J. Cosmol. Astropart. Phys. 0806, 005 (2008)

    Article  ADS  Google Scholar 

  25. Y-Y Keum, Mod. Phys. Lett. A22, 2131 (2007)

    Article  ADS  Google Scholar 

  26. K Ichiki and Y-Y Keum, J. High Energy Phys. 0806, 058 (2008)

    Article  ADS  Google Scholar 

  27. D B Kaplan, A E Nelson and N Weiner, Phys. Rev. Lett. 93, 091801 (2004) R D Peccei, Phys. Rev. D 71, 023527 (2005)

  28. R Fardon, A E Nelson and N Weiner, J. Cosmol. Astropart. Phys. 0410, 005 (2004) arXiv:astro-ph/0309800

    Article  ADS  Google Scholar 

  29. X J Bi, P h Gu, X l Wang and X M Zhang, Phys. Rev. D 69, 113007 (2004) arXiv:hep-ph/0311022

    Article  ADS  Google Scholar 

  30. A W Brookfield, C van de Bruck, D F Mota, and D Tocchini-Valentini, Phys. Rev. Lett. 96, 061301 (2006); Phys. Rev. D 73, 083515 (2006)

  31. G B Zhao, J Q Xia and X M Zhang, arXiv:astro-ph/ 0611227

  32. C P Ma and E Bertschinger, Astrophys. J. 455, 7 (1995)

    Article  ADS  Google Scholar 

  33. WMAP Collaboration: G Hinshaw et al, arXiv: astro-ph/0603451

  34. WMAP Collaboration: L Page et al, arXiv:astro-ph/ 0603450

  35. The 2dFGRS Collaboration: S Cole et al, Mon. Not. R. Astron. Soc. 362, 505 (2005) arXiv:astro-ph/0501174

  36. P McDonald, J Miralda-Escude, M Rauch, W L W Sargent, T A Barlow, R Cen and J P Ostriker, Astrophys. J. 543, 1 (2000) arXiv:astro-ph/9911196

    Article  ADS  Google Scholar 

  37. R A C Croft et al, Astrophys. J. 581, 20 (2002) arXiv:astro-ph/0012324

    Article  ADS  Google Scholar 

  38. A Goobar, S Hannestad, E Mortsell and H Tu, J. Cosmol. Astropart. Phys. 0606, 019 (2006) arXiv:astro-ph/0602155

    Article  ADS  Google Scholar 

  39. P McDonald, U Seljak, R Cen, P Bode and J P Ostriker, Mon. Not. R. Astron. Soc. 360, 1471 (2005), arXiv:astro-ph/0407378

    Article  ADS  Google Scholar 

  40. A Lewis and S Bridle, Phys. Rev. D 66, 103511 (2002)

    Article  ADS  Google Scholar 

  41. A W Brookfield, C van de Bruck, D F Mota and D Tocchini-Valentini, Phys. Rev. D 76, 049901 (2007)

    Article  ADS  Google Scholar 

  42. N Afshordi, M Zaldarriaga and K Kohri, Phys. Rev. D 72, 065024 (2005)

    Article  ADS  Google Scholar 

  43. R Bean, E E Flanagan and M Trodden, arXiv:0709. 1128 [astro-ph]

  44. M Kaplinghat and A Rajaraman, Phys. Rev. D 75, 103504 (2007)

    Article  ADS  Google Scholar 

  45. O E Bjaelde, A W Brookfield, C van de Bruck, S Hannestad, D F Mota, L Schrempp and D Tocchini-Valentini, arXiv:0705.2018[astro-ph]

  46. R Takahashi and M Tanimoto, J. High Energy Phys. 0605, 021 (2006)

    Article  ADS  Google Scholar 

  47. Y S Song and L Knox, Phys. Rev. D 70, 063510 (2004)

    Article  ADS  Google Scholar 

  48. S Hannestad, H Tu and Y Y Y Wong, J. Cosmol. Astropart. Phys. 0606, 025 (2006)

    Article  ADS  Google Scholar 

  49. J Lesgourgues and S Pastor, Phys. Rep. 429, 307 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

YYK is grateful to the organizers of UNICOS 2014 for the opportunity to present this work and for the warm hospitality. YYK would like to thank LAPTh at Annecy in France for the warm hospitality he has received during his visit there. His work is partially supported by the Research Professorship (A) of Ewha Womans University during 2010–2011, and by the Basic Science Research Programme through the National Research Foundation of Korea (NRF) funded by the Korean Ministry of Education, Science and Technology (Grant Nos 0409-20130121; 0409-20140077) and International Cooperation Research Programme funded by the Korean Ministry of Science, ICT and Future Planning (Grant No. 0409-20130159).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YONG-YEON KEUM.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KEUM, YY. Neutrino mass bounds from neutrinoless double beta-decays and cosmological probes. Pramana - J Phys 86, 437–451 (2016). https://doi.org/10.1007/s12043-015-1164-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-015-1164-8

Keywords

PACS Nos

Navigation