Skip to main content
Log in

A two-component dark matter model with real singlet scalars confronting GeV γ-ray excess from galactic centre and Fermi bubble

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We propose a two-component dark matter (DM) model, each component of which is a real singlet scalar, to explain results from both direct and indirect detection experiments. We put the constraints on the model parameters from theoretical bounds, PLANCK relic density results and direct DM experiments. The γ-ray flux is computed from DM annihilation in this framework and is then compared with the Fermi-LAT observations from galactic centre region and Fermi bubble.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. PLANCK Collaboration: P A R Ade et al, Astron. Astrophys. 571, A16 (2014), arXiv:1303.5076[astro-ph.CO]

  2. Fermi / LAT Collaboration: W B Atwood et al, Astrophys. J. 697, 1071 (2009), arXiv: 0902.1089[astro-ph.IM]

  3. D Hooper and L Goodenough, Phys. Lett. B 697, 412 (2011)

    Article  ADS  Google Scholar 

  4. A Boyarsky, D Malyshev and O Ruchayskiy, Phys. Lett. B 705, 165 (2011)

    Article  ADS  Google Scholar 

  5. M Su, T R Slatyer and D P Finkbeiner, Astrophys. J. 724, 1044 (2010), arXiv:1005.5480[astro-ph.HE]

    Article  ADS  Google Scholar 

  6. J Edsjö and P Gondolo, Phys. Rev. D 56, 1879 (1997)

    Article  ADS  Google Scholar 

  7. G Belanger, F Boudjema, P Brun, A Pukhov, S Rosier-Lees, P Salati and A Semenov, Comput. Phys. Commun. 182, 842 (2011), arXiv:1004.1092[hep-ph]

    Article  ADS  MATH  Google Scholar 

  8. G Belanger, F Boudjema, A Pukhov and A Semenov arXiv:1305.0237[hep-ph]

  9. C P Burgess, M Pospelov and T ter Veldhuis, Nucl. Phys. B619, 709–728 (2001) hep-ph/0011335

    Article  ADS  Google Scholar 

  10. Z Ahmed et al, Science 327, 1619 (2010)

    Article  ADS  Google Scholar 

  11. CDMS Collaboration: R Agnese et al, Phys. Rev. D 88, 031104 (2013), arXiv:1304.3706[astro-ph.CO] CDMS Collaboration: R Agnese et al, arXiv:1304. 4279[hep-ex]

  12. G Angloher, M Bauer, I Bavykina, A Bento, C Bucci, C Ciemniak, G Deuter, F von Feilitzsch, et al, Eur. Phys. J. C 72, 1971 (2012), arXiv:1109.0702[astro-ph.CO]

    Article  ADS  Google Scholar 

  13. XENON100 Collaboration: E Aprile et al, Phys. Rev. Lett. 107, 131302 (2011), arXiv:1104.2549[astro-ph.CO]

  14. XENON100 Collaboration: E Aprile et al, Phys. Rev. Lett. 109, 181301 (2012), arXiv:1207.5988[astro-ph.CO]

  15. M Cirelli, G Corcella, A Hektor, G Hutsi, M Kadastik, P Panci, M Raidal, F Sala et al, J. Cosmol. Astorpart. Phys. 1103, 051 (2011) Erratum, ibid. 1210, E01 (2012), arXiv:1012.4515[hep-ph]

  16. J F Navarro, C S Frenk and S D M White, Astrophys. J. 462, 563 (1996)

    Article  ADS  Google Scholar 

  17. J F Navarro, C S Frenk and S D M White, Astrophys. J. 490, 493 (1997)

    Article  ADS  Google Scholar 

  18. B Moore, T Quinn, F Governato, J Stadel and G Lake, Mon. Not. R. Astron. Soc. 310, 1147 (1999) J Diemand, B Moore and J Stadel, Mon. Not. R. Astron. Soc. 353, 624 (2004) B Moore et al, Astrophys. J. 499, L5 (1998)

  19. J N Bahcall and R M Soneira, Astrophys. J. Suppl. 44, 73 (1980)

    Article  ADS  Google Scholar 

  20. J Einasto, Trudy Inst. Astroz. Alma-Ata 51, 87 (1965)

    ADS  Google Scholar 

  21. W-C Huang, A Urbano and W Xue, arXiv:1307. 6862[hep-ph]

  22. W-C Huang, A Urbano and W Xue, arXiv:1310. 7609[hep-ph]

  23. D Hooper and T R Slatyer, Phys. Dark Univ. 2, 118 (2013), arXiv:1302.6589[astro-ph.HE]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DEBASISH MAJUMDAR.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MAJUMDAR, D., MODAK, K.P. & RAKSHIT, S. A two-component dark matter model with real singlet scalars confronting GeV γ-ray excess from galactic centre and Fermi bubble. Pramana - J Phys 86, 343–351 (2016). https://doi.org/10.1007/s12043-015-1154-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-015-1154-x

Keywords

PACS No.

Navigation