Skip to main content
Log in

Stretched flow of Carreau nanofluid with convective boundary condition

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The steady laminar boundary layer flow of Carreau nanofluid over a stretching sheet is investigated. Effects of Brownian motion and thermophoresis are present. Heat transfer is characterized using convective boundary condition at the sheet. The governing partial differential equations are reduced into a set of nonlinear ordinary differential equations through suitable transformations. Results of velocity, temperature and concentration fields are computed via homotopic procedure. Numerical values of skin-friction coefficient, local Nusselt and Sherwood numbers are computed and discussed. A comparative study with existing solutions in a limiting sense is made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. S Kakac and A Pramuanjaroenkij, Int. J. Heat Mass Transfer 52, 3187 (2009)

    Article  Google Scholar 

  2. S U S Choi, ASME Int. Mech. Eng. 66, 99 (1995)

    Google Scholar 

  3. S U S Choi, Z G Zhang, W Yu, F E Lockwood, and E A Grulke, Appl. Phys. Lett. 79, 2252 (2001)

    Article  ADS  Google Scholar 

  4. K Khanafer, K Vafai, and M Lightstone, Int. J. Heat Mass Transfer 46, 3639 (2003)

    Article  Google Scholar 

  5. H U Kang, S H Kim, and J M Oh, Exp. Heat Transfer 19, 181 (2006)

    Article  ADS  Google Scholar 

  6. M Turkyilmazoglu, Chem. Eng. Sci. 84, 182 (2012)

    Article  Google Scholar 

  7. L Zheng, C Zhang, X Zhang, and J Zhang, J. Franklin Institute 350, 990 (2013)

    Article  Google Scholar 

  8. C Zhang, L Zheng, X Zhang, and G Chen, Appl. Math. Comput. 39, 165 (2015)

    MathSciNet  Google Scholar 

  9. M M Rashidi, S Abelman, and N F Mehr, Int. J. Heat Mass Transfer 62, 515 (2013)

    Article  Google Scholar 

  10. M Mustafa, J A Khan, T Hayat, and A Alsaedi, IEEE Trans. 14, 159 (2015)

    Google Scholar 

  11. S A Shehzad, F M Abbasi, T Hayat, and F Alsaadi, PLoS One 9(11), e111417 (2014)

    Article  ADS  Google Scholar 

  12. M Sheikholeslami, M G Bandpy, and K Vajravelu, Int. J. Heat Mass Transfer 80, 16 (2015)

    Article  Google Scholar 

  13. M Sheikholeslami, M Hatami, and G Domairry, J. Taiwan Inst. Chem. Eng. 46, 43 (2015)

    Article  Google Scholar 

  14. M Turkyilmazoglu, ASME J. Heat Transfer, DOI:10. 1115/1.4025730

  15. M M Rashidi, N V Ganesh, A K A Hakeem, and B Ganga, J. Mol. Liquids 198, 234 (2014)

    Article  Google Scholar 

  16. L J Crane, Z. Angew Math. Mech. 21, 645 (1970)

    Article  Google Scholar 

  17. T Hayat, M Waqas, S A Shehzad, and A Alsaedi, Scientia Iranica B 21, 682 (2014)

    Google Scholar 

  18. S Mukhopadhyay, G C Layek, and S A Samad, Int. J. Heat Mass Transfer 48, 4460 (2005)

    Article  Google Scholar 

  19. K Bhattacharyya and G C Layek, Chem. Eng. Commun. 197, 1527 (2010)

    Article  Google Scholar 

  20. W A Khan, M Khan, and R Malik, PLoS One 9, e105107 (2010)

    Article  Google Scholar 

  21. A Aziz, Commun. Nonlin. Sci. Numer. Simulat. 14, 1064 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  22. R C Bataller, Appl. Math. Comput. 206, 832 (2008)

    Article  MathSciNet  Google Scholar 

  23. A Ishak, Appl. Math. Comput. 217, 837 (2010)

    Article  MathSciNet  Google Scholar 

  24. O D Makinde and A Aziz, Int. J. Thermal. Sci. 50, 1326 (2011)

    Article  Google Scholar 

  25. T Hayat, M Waqas, S A Shehzad, and A Alsaedi, J. Mech. 29, 403 (2013)

    Article  Google Scholar 

  26. T Hayat, S Asad, M Mustafa, and A Alsaedi, Appl. Math. Comput. 246, 12 (2014)

    Article  MathSciNet  Google Scholar 

  27. N Ali and T Hayat, Appl. Math. Comput. 193, 535 (2007)

    Article  MathSciNet  Google Scholar 

  28. B I Olajuwon, Thermal. Sci. 15, 241 (2011)

    Article  Google Scholar 

  29. M S Tshehla, Int. J. Phys. Sci. 6, 3896 (2011)

    Google Scholar 

  30. S J Liao, Beyond perturbation: Introduction to homotopy analysis method (Chapman and Hall, CRC Press, Boca Raton, 2003)

    Book  Google Scholar 

  31. S J Liao, Commun. Nonlin. Sci. Numer. Simulat. 14, 983 (2009)

    Article  ADS  Google Scholar 

  32. M M Rashidi, S A Mohimanian Pour, T Hayat, and S Obaidat, Comput. Fluids 54, 1 (2012)

    Article  MathSciNet  Google Scholar 

  33. M Ghanbari, S Abbasbandy, and T Allahviranloo, Appl. Comput. Mech. 12, 355 (2013)

    MathSciNet  Google Scholar 

  34. M Turkyilmazoglu, Commun. Nonlin. Sci. Numer. Simulat. 17, 4097 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  35. S Abbasbandy, E Shivanian, and K Vajravelu, Commun. Nonlin. Sci. Numer. Simulat. 16, 4268 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  36. O A Bég, M M Rashidi, N Kavyani, and M N Islam, Int. J. Appl. Math. Mech 9, 37 (2013)

    Google Scholar 

  37. M Turkyilmazoglu, Phys. Scr. 86, 015301 (2012)

    Article  ADS  Google Scholar 

  38. S Abbasbandy and T Hayat, Commun. Nonlin. Sci. Numer. Simulat. 14, 3591 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  39. S A Shehzad, A Alsaedi, T Hayat, and M S Alhuthali, J. Taiwan Inst. Chem. Eng. 45, 787 (2014)

    Article  Google Scholar 

  40. S A Shehzad, A Alsaedi, and T Hayat, Int. J. Heat Mass Transfer 55, 3971 (2012)

    Article  Google Scholar 

  41. A Alsaedi, M Awais, and T Hayat, Commun. Nonlin. Sci. Numer. Simulat. 17, 4210 (2012)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S A SHEHZAD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

HAYAT, T., WAQAS, M., SHEHZAD, S.A. et al. Stretched flow of Carreau nanofluid with convective boundary condition. Pramana - J Phys 86, 3–17 (2016). https://doi.org/10.1007/s12043-015-1137-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-015-1137-y

Keywords

PACS Nos

Navigation