Skip to main content
Log in

Pressure–temperature dependence of thermodynamic properties of rutile (TiO2): A first-principles study

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Ab-initio calculations of thermal properties of rutile (TiO2) have been performed by using the projector augmented-wave (PAW) method within the generalized gradient approximation (GGA). Both pressure- and temperature-dependent thermodynamic properties such as the bulk modulus, thermal expansion, thermal expansion coefficient, heat capacity at constant volume and constant pressure were calculated using two different models based on the quasiharmonic approximation (QHA): the Debye–Slater and Debye–Grüneisen model with Dugdale–MacDonald (DM) approximation. Also, the empirical energy corrections were applied to the results to correct the systematic errors introduced by the functional. It is found that the Debye–Grüneisen model provides more accurate estimates than the Debye-Slater models, especially after empirical energy correction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. M Landmann, E Rauls and W G Schmidt, J. Phys.: Condens. Matter 24, 195503 (2012)

  2. B O’Regan and M Gratzel, Nature 353, 737 (1991)

  3. Y Liu and R O Claus, J. Am. Chem. Soc. 119, 5273 (1997)

  4. T Busani and R A B Devine, Semicond. Sci. Technol. 20, 870 (2005)

  5. Y Hu, H L Tsai and C L Huangk, Eur. Ceram. Soc. 23, 691 (2003)

  6. Y Shao, D Tang, J Sun, Y Lee and W Xiong, China Particuol 2, 119 (2004)

  7. N Nolan, S Pillai and M Seery, Phys. Chem. 113, 16151 (2009)

  8. R G McQueen, J C Jamieson and S T March, Science 155, 1401 (1967)

  9. L Gerward and J S Olsen, J. Appl. Crystallogr. 30, 259 (1997)

  10. L Nagel and M O’Keeffe, Mater. Res. Bull. 6, 1317 (1971)

  11. K Kusaba, M Kikuchi, K Fukuoka and Y Syono, Phys. Chem. Minerals 15, 238 (1988)

  12. R K Linde and P S DeCarli, J. Chem. Phys. 50, 319 (1969)

  13. A D Natalia, S D Leonid, A Rajeev, B P Vitaly, V Dmitriev, H P Weber, J M Osorio-Guillen and B Johansson, Phys. Rev. Lett. 87, 275501 (2001)

  14. Y H Zhang, A Weidenkafia and A Reller, Mater. Lett. 54, 375 (2002)

  15. D A H Hanaor and C C Sorrell, J. Mater. Sci. 46, 855 (2011)

  16. K V Krishna Rao, S V Nagender Naidu and L Iyengar, J. Am. Ceram. Soc. 53, 124 (1970)

  17. K Sugiyama and Y Takéuchi, Zeits. Krist. 194, 305 (1991)

  18. C M B Henderson, K S Knight and A R Lennie, The Open Mineral. J. 3, 1 (2009)

  19. D de Ligny, P Richet, E F Westrum and J Roux, Phys. Chem. Minerals 29, 267 (2002)

  20. W Yong, E Dachs, A Benisek and R A Secco, Phys. Earth Planet. Int. 226, 39 (2014)

  21. I J Fritz, J. Phys. Chem. Sol. 35, 817 (1974)

  22. Y Jing-Xin, F Min, J Guang-Fu and C Xiang-Rong, Chin. Phys. Soc. 18, 269 (2009)

  23. J Muscat, V Swamy and N M Harrison, Phys.: Rev. B 65, 224112 (2002)

  24. X F Zhou, X Dong, G R Qian, L Zhang, Y Tian and H T Wang, Phys. Rev. B 82, 060102 (2010)

  25. E Shojaee and M R Mohammadizadeh, J. Phys.: Condens. Matter. 22, 015401 (2010)

  26. R Sikora, J. Phys. Chem. Sol. 66, 1069 (2005)

  27. Z G Mei, Y Wang, S L Shang and Z K Liu, Inorg. Chem. 50, 6996 (2011)

  28. Z G Mei, Y Wang, S Shang and Z K Liu, Comput. Mater. Sci. 83, 114 (2014)

  29. P Giannozzi et al, J. Phys.: Condens. Matter 21, 395502 (2009)

  30. D Vanderbilt, Phys. Rev. B 41, 7892 (1990)

  31. D Becke, Phys. Rev. A 38, 3098 (1988)

  32. C Lee, W Yang and R G Parr, Phys. Rev. B 37, 375 (1988)

  33. H J Monkhorst and J D Pack, Phys. Rev. B 13, 5188 (1976)

  34. M Methfessel and A T Paxton, Phys. Rev. B 40, 3616 (1989)

  35. F Birch, Phys. Rev. 71, 809 (1947)

  36. M A Blanco, A M Pendas, E Francisco, J M Recio and R Franco, J. Mol. Struct. Theochem. 368, 45 (1996)

  37. X G Lu, M Selleby and B Sundman, Acta Mater. 55, 1215 (2007)

  38. J C Slater, Introduction to chemical physics (McGraw-Hill, New York, 1939)

  39. J S Dugdale and D K C MacDonald, Phys. Rev. 89, 832 (1953)

  40. A Otero-de-la-Roza and D Abbasi-P’erez et al, Comput. Phys. Commun. 182, 2232 (2011)

  41. J K Burdett, T Hughbanks, G J Miller, J W Richardson and J V Smith, J. Am. Chem. Soc. 109, 3639 (1987)

  42. R M Hazen and L W Finger, J. Phys. Chem. Solids 42, 143 (1981)

  43. L Gerward and J S Olsen, J. Appl. Crystallogr. 30, 259 (1997)

  44. Y Al-Khatatbeh, K K M Lee and B Kiefer, Phys. Rev. B 79, 134114 (2009)

Download references

Acknowledgements

The authors would like to thank Dr M A Blanco and his coworkers for their GIBBS code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HALEH KANGARLOU.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KANGARLOU, H., ABDOLLAHI, A. Pressure–temperature dependence of thermodynamic properties of rutile (TiO2): A first-principles study. Pramana - J Phys 86, 117–126 (2016). https://doi.org/10.1007/s12043-015-0966-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-015-0966-z

Keywords

PACS Nos

Navigation