Skip to main content
Log in

Importance of randomness in biological networks: A random matrix analysis

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Random matrix theory, initially proposed to understand the complex interactions in nuclear spectra, has demonstrated its success in diverse domains of science ranging from quantum chaos to galaxies. We demonstrate the applicability of random matrix theory for networks by providing a new dimension to complex systems research. We show that in spite of huge differences these interaction networks, representing real-world systems, posses from random matrix models, the spectral properties of the underlying matrices of these networks follow random matrix theory bringing them into the same universality class. We further demonstrate the importance of randomness in interactions for deducing crucial properties of the underlying system. This paper provides an overview of the importance of random matrix framework in complex systems research with biological systems as examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R Albert and A-L Barabási, Rev. Mod. Phys. 74, 47 (2002)

  2. S Boccaletti, V Latora, Y Moreno, M Chavez and D U Hwang, Phys. Rep. 424, 175 (2006)

  3. S P Borgatti, A Mehra, D J Brass and G Labianca, Science 323, 892 (2009)

  4. S Jalan, C Sarkar, A Madhusudanan and S K Dwivedi, PLoS ONE 9, (2) e88249 (2014)

  5. J C Venter et al, Science 16, 1304 (2001)

  6. A-L Barabási, N Gulbahce and J Loscalzo, Nat. Rev. Genet. 12, 56 (2011)

  7. L H Hartwell, J J Hopfield, S Leibler and A W Murray, Nature 402, 47 (1999)

  8. H Kitano, Science 295, 1662 (2002)

  9. X Zhu, M Gerstein and M Synder, Genes and Dev. 21, 1010 (2007)

  10. A-L Barabási and Z Oltan, Nat. Rev. Genet. 5, 101 (2004)

  11. S Jalan, N Solymosi, G Vatty and B Li, Phys. Rev. E 81, 046118 (2010)

  12. T Ideker, T Galitski and L Hood, Annu. Rev. Genomics Hum. Genet. 2, 343 (2001)

  13. T Guhr, A M Groeling and A H A Weidenmüller, Phys. Rep. 299, 189 (1998)

  14. T Papenbrock and H A Weidenmüller, Rev. Mod. Phys. 79, 997 (2007)

  15. V Plerou, P Gopikrishnan, B Rosenow, L A N Amaral and H E Stanley, Phys. Rev. Lett. 83, 1471 (1999)

  16. P Seba, Phys. Rev. Lett. 91, 198104 (2003)

  17. M S Santhanam and P K Patra, Phys. Rev. E 64, 016102 (2001)

  18. M L Mehta, Random matrices, 2nd edn (Academic Press, New York, 1991)

  19. K Życzkowski, Quantum chaos edited by H A Cerdeira, R Ramaswamy, M C Gutzwiller and G Casati (World Scientific, 1991)

  20. I J Farkas, I Derényi, A-L Barabási and T Vicsek, Phys. Rev. E 64, 026704 (2001)

  21. S N Dorogovtsev, A V Goltsev, J F Mendes and A N Samukhin, Phys. Rev. E 68, 046109 (2003)

  22. M A M de Aguiar and Y Bar-Yam, Phys. Rev. E 71, e016106 (2005)

  23. T A Brody, Lett. Nuovo Cimento 7, 482 (1973)

  24. J N Bandyopadhyay and S Jalan, Phys. Rev. E 76, 026109 (2007)

  25. S Jalan and J N Bandyopadhyay, Phys. Rev. E 76, 046107 (2007)

  26. A Agarwal, C Sarkar, S K Dwivedi, N Dhasmana and S Jalan, Physica A 404, 359 (2014)

  27. R Potestio, F Caccioli and P Vivo, Phys. Rev. Lett. 103, 268101 (2009)

  28. S Jalan, C Y Ung, J Bhojwani, B Li, L Zhang, S H Lan and Z Gong, Europhys. Lett. 99, 48004 (2012)

  29. D J Watts and S H Strogatz, Nature 393, 440 (1998)

  30. S Clancy, Nature Education 1, 187 (2008)

  31. F M Atay, S Jalan and J Jost, Complexity 15, 29 (2009)

  32. S Jalan and J N Bandyopadhyay, Europhys. Lett. 87, 48010 (2009)

  33. E Ravasz, A L Somera, D A Mongru, Z N Oltvai and A-L Barabási, Science 297, 1551 (2002)

  34. D A Petrov, Genetica 115, 81 (2002)

  35. M Buiatti and G Longo, Theory Biosci. arXiv:1104.1110 (2011)

  36. J D Cohen and F Tong, Science 293, 2405 (2001)

  37. N Perony, C J Tessone, B König and F Schweitzer, PLoS Comput. Biol. 8, e1002786 (2012)

  38. S Jalan, Phys. Rev. E 80, 046101 (2009)

  39. J X de Carvalho, S Jalan and M S Hussein, Phys. Rev. E 79, 056222 (2009)

  40. A-L Barabási and R Albert, Science 286, 509 (1999)

  41. R Guimerá and L A N Amaral, Nature (London) 433, 895 (2005)

  42. F Evers and A D Mirlin, Rev. Mod. Phys. 80, 1355 (2008)

  43. S K Dwivedi and S Jalan, Phys. Rev. E 87, 042714 (2013) S Jalan and S K Dwivedi, Phys. Rev. E 89, 062718 (2014)

  44. Y Le and P A Agarwal, PloS ONE 4, e4346 (2009)

  45. M A Yildirim, Nature Biotech. 25, 1119 (2007)

  46. P Csermely, V Ágoston and S Pongor, Trends Pharmacol. Sci. 26, 178 (2005) T Korcsmáros, M S Szalay, C Böde, I A Kovács and P Csermely, Expert Opinion on Drug Discovery 2, 1 (2007) G R Zimmermann, J Lehár and C T Keith, Drug Discovery Today 12, 34 (2007) M Antal, C Böde and P Csemely, Curr. Protein Pept. Sci. 10, 161 (2009) P Csermely, Trends Biochem. Sci. 33, 569 (2008)

  47. G I Simkó, D Gyurkó, D V Veres, T Nánási and P Csermely, Genome Medicine 1, 90 (2009)

Download references

Acknowledgements

The author thanks Department of Science and Technology (DST), Govt. of India grant SR/FTP/PS-067/2011 and Council of Scientific and Industrial Research (CSIR), Govt. of India grant 25(02205)/12/EMR-II for financial support. SJ is grateful to Arul Lakshminarayan,V K B Kota and Sudhir Jain for insightful discussions on random matrix theory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SARIKA JALAN.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

JALAN, S. Importance of randomness in biological networks: A random matrix analysis. Pramana - J Phys 84, 285–293 (2015). https://doi.org/10.1007/s12043-015-0940-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-015-0940-9

Keywords

PACS Nos

Navigation