Skip to main content
Log in

Spectral intensity distribution of trapped fermions

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

To calculate static response properties of a many-body system, local density approximation (LDA) can be safely applied. But, to obtain dynamical response functions, the applicability of LDA is limited bacause dynamics of the system needs to be considered as well. To examine this in the context of cold atoms, we consider a system of non-interacting spin-\(\frac {1}{2}\) fermions confined by a harmonic trapping potential. We have calculated a very important response function, the spectral intensity distribution function (SIDF), both exactly and using LDA at zero temperature and compared with each other for different dimensions, trap frequencies and momenta. The behaviour of the SIDF at a particular momentum can be explained by noting the behaviour of the density of states (DoS) of the free system (without trap) in that particular dimension. The agreement between exact and LDA SIDFs becomes better with increase in dimensions and number of particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. E A Cornell and C E Wieman, Rev. Mod. Phys. 74, 875 (2002)

  2. M Greiner, O Mandel, T Esslinger, T W Hansch and I Bloch, Nature 415, 39 (2002)

  3. C A Regal and D S Jin, Adv. Atom. Mol. Opt. Phys. 54, 1 (2006)

  4. Y-J Lin, R L Compton, K J Garcia, J V Porto and I B Spielman, Nature 462, 628 (2009)

  5. Y-J Lin, R L Compton, A R Perry, W D Phillips, J V Porto and I B Spielman, Phys. Rev. Lett. 102, 130401 (2009)

  6. J Dalibard, F Gerbier, G Juzeliünas and P Öhberg, Rev. Mod. Phys. 83, 1523 (2011)

  7. S K Ghosh, J P Vyasanakere and V B Shenoy, Phys. Rev. A 84, 053629 (2011)

  8. J P Vyasanakere and V B Shenoy, Phys. Rev. B 83, 094515 (2011)

  9. H Hu, L Jiang, X-J Liu and H Pu, Phys. Rev. Lett. 107, 195304 (2011)

  10. J P Vyasanakere, S Zhang and V B Shenoy, Phys. Rev. B 84, 014512 (2011)

  11. P Wang, Z-Q Yu, Z Fu, J Miao, L Huang, S Chai, H Zhai and J Zhang, Phys. Rev. Lett. 109, 095301 (2012)

  12. L W Cheuk, A T Sommer, Z Hadzibabic, T Yefsah,WS Bakr and MWZwierlein, Phys. Rev. Lett. 109, 095302 (2012)

  13. R Comin and A Damascelli, arXiv preprint arXiv:1303.1438

  14. A Damascelli, Z Hussain and Z-X Shen, Rev. Mod. Phys. 75, 473 (2003)

  15. T L Dao, A Georges, J Dalibard, C Salomon and I Carusotto, Phys. Rev. Lett. 98, 240402 (2007)

  16. J T Stewart, J P Gaebler and D S Jin, Nature 454, 744 (2008)

  17. J P Gaebler, J T Stewart, T E Drake, D S Jin, A Perali, P Pieri and G C Strinati, Nature Phys. 6, 569 (2010)

  18. B Fröhlich, M Feld, E Vogt, M Koschorreck, W Zwerger and M Köhl, Phys. Rev. Lett. 106, 105301 (2011)

  19. V Pietilä, Phys. Rev. A 86, 023608 (2012)

  20. E K U Gross and W Kohn, Phys. Rev. Lett. 55, 2850 (1985)

  21. K Yabana and G F Bertsch, Int. J. Quant. Chem. 75, 55 (1999)

  22. L Pezzè, L Pitaevskii, A Smerzi, S Stringari, G Modugno, E de Mirandes, F Ferlaino, H Ott, G Roati and M Inguscio, Phys. Rev. Lett. 93, 120401 (2004)

  23. E J Mueller, Phys. Rev. Lett. 93, 190404 (2004)

  24. F Gleisberg, W Wonneberger, U Schlöder and C Zimmermann, Phys. Rev. A 62, 063602 (2000)

  25. P Vignolo, A Minguzzi and M P Tosi, Phys. Rev. Lett. 85, 2850 (2000)

  26. D A Butts and D S Rokhsar, Phys. Rev. A 55, 4346 (1997)

  27. D J Toms, Ann. Phys. 320, 487 (2005)

  28. J Schneider and H Wallis, Phys. Rev. A 57, 1253 (1998)

  29. T Loftus, C A Regal, C Ticknor, J L Bohn and D S Jin, Phys. Rev. Lett. 88, 173201 (2002)

Download references

Acknowledgements

The author acknowledges Vijay B Shenoy for extensive discussions. The financial support from CSIR, India through SRF grants is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SUDEEP KUMAR GHOSH.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

GHOSH, S.K. Spectral intensity distribution of trapped fermions. Pramana - J Phys 85, 605–616 (2015). https://doi.org/10.1007/s12043-014-0903-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-014-0903-6

Keywords

PACS Nos

Navigation