Skip to main content
Log in

Regge-like initial input and evolution of non-singlet structure functions from DGLAP equation up to next-next-to-leading order at low x and low Q 2

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This is an attempt to study how the features of Regge theory, along with QCD predictions, lead towards the understanding of unpolarized non-singlet structure functions \(F_{2}^{\text {NS}} (x,Q^{2} )\) and x F 3(x,Q 2) at low x and low Q 2. Combining the features of perturbative quantum chromodynamics (pQCD) and Regge theory, an ansatz for \(F_{2}^{\text {NS}} (x,Q^{2})\) and x F 3(x,Q 2) structure functions at small x was obtained, which when used as the initial input to Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) equation, gives the Q 2 evolution of the non-singlet structure functions. The non-singlet structure functions, evolved in accordance with DGLAP evolution equations up to next-next-to-leading order are studied phenomenologically in comparison with the available experimental and parametrization results taken from NMC, CCFR, NuTeV, CORUS, CDHSW, NNPDF and MSTW Collaborations and a very good agreement is observed in this regard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. A M Cooper-Sarkar, R C E Devenish and A DeRoeck, Int. J. Mod. Phys. A 13, 3385 (1998)

  2. M Klein and R Yoshida, Prog. Part. Nucl. Phys. 61, 343 (2008)

  3. E Pereza and E Rizvib, Rep. Prog. Phys. 76, 046201 (2013)

  4. T Gehrmann, R G Roberts and M R Whalley, J. Phys. G: Nucl. Part. Phys. 25, A1 (1999)

  5. J M Conrad, M H Shaevitz and T Bolton, Rev. Mod. Phys. 70, 1341 (1998)

  6. M Tzanov, AIP Conf. Proc. 1222, 243 (2010)

  7. V N Gribov and L N Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972)

  8. L N Lipatov, Sov. J. Nucl. Phys. 20, 94 (1975)

  9. Y L Dokshitzer, Sov. Phys. JETP 46, 641 (1977)

  10. G Altarelli and G Parisi, Nucl. Phys. B 126, 297 (1977)

  11. R Toldra, Comput. Phys. Commun. 143, 287 (2002)

  12. N Cabibbo and R Petronzio, Nucl. Phys. B 137, 395 (1978)

  13. M Devee, R Baisya and J K Sarma, Euro. Phys. J. C 72, 2036(1–11) (2012)

  14. M M Block, L Durand, P Ha and D W McKay, Phys. Rev. D 83, 054009 (2011)

  15. R Baishya, U Jamil and J K Sarma, Phys. Rev. D 79, 034030 (2009)

  16. R Baishya and J K Sarma, Phys. Rev. D 74, 107702 (2006)

  17. N N K Borah, D K Choudhury and P K Chahariyah, Pramana – J. Phys. 79(4), 833 (2012)

  18. N Baruah, N M Nath and J K Sarma, Int. J. Theor. Phys. 52, 2464 (2013)

  19. S Bhattacharjee, R Baisya and J K Sarma, Pramana – J. Phys. 80(1), 61 (2013)

  20. M Gluck, E Reya and A Vogt, Eur. Phys. J. C 5, 461 (1998)

  21. A D Martin, R G Roberts, W J Stirling and R S Thorne, Eur. Phys. J. C 4, 463 (1998)

  22. A D Martin, W J Stirling, R S Thorne and G Watt, Eur. Phys. J. C 63, 189 (2009)

  23. M Bishari, Phys. Lett. B 90, 147 (1980)

  24. U Jamil and J K Sarma, Pramana – J. Phys. 71, 509 (2008)

  25. L F Abbott, W B Atwood and R Michael Barnett, Phys. Rev. D 22, 582 (1980)

  26. L F Abbott and R Michael Barnett, Ann. Phys. 125, 276 (1980)

  27. A Donnachie and P V Landshoff, Phys. Lett. B 296, 227 (1992)

  28. A Donnachie and P V Landshoff, Z. Physik C 61, 139 (1994)

  29. M Arneodo et al, (CERN-NA-037, NMC), Nucl. Phys. B 483, 3 (1997)

  30. W G Seligman et al, Phys. Rev. Lett. 79, 1213 (1997)

  31. M Tzanov et al, Phys. Rev. D 74, 012008(1–16) (2006)

  32. G Onengut et al, Phys. Lett. B 632, 65 (2006)

  33. J P Berge et al, Z. Phys. C 49, 187 (1991)

  34. S. Forte, L Garrido, J Latorre and A Piccione, J. High Energy Phys. 05, 062 (2002)

  35. A D Martin, W J Stirling, R S Thorne and G Watt, Euro. Phys. J. C 63, 189 (2009)

  36. J Kwiecinski, Acta Phys. Polon. B 27, 893 (1996)

  37. P D B Collins, An introduction to Regge theory and high energy physics (Cambridge University Press, Cambridge, 1977)

  38. S Moch, J A M Vermaseren and A Vogt, Nucl. Phys. B 688, 101 (2004)

  39. R T Herrrod and S Wada, Phys. Lett. B 96, 195 (1980)

  40. K G Chetyrkin, B A Kniehl and M Steinhauser, Phys. Rev. Lett. 79, 2184 (1997)

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from DAE-BRNS, India, under sanction No. 2012/37P/36/BRNS/2018 dated 24 Nov. 2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nayan Mani Nath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nath, N.M., Das, M.K. & Sarma, J.K. Regge-like initial input and evolution of non-singlet structure functions from DGLAP equation up to next-next-to-leading order at low x and low Q 2 . Pramana - J Phys 85, 629–637 (2015). https://doi.org/10.1007/s12043-014-0902-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-014-0902-7

Keywords

PACS Nos

Navigation