Skip to main content
Log in

Synchronization enhancement via an oscillatory bath in a network of self-excited cells

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The possibility of using a dynamic environment to achieve and optimize phase synchronization in a network of self-excited cells with free-end boundary conditions is addressed in this paper. The dynamic environment is an oscillatory bath coupled linearly to a network of four cells. The boundaries of the stable solutions of the dynamical states as well as the ranges of coupling parameters leading to stability and instability of synchronization are determined. Numerical simulations are used to check the accuracy and to complement the result obtained from analytical treatment. The robustness of synchronization strategy is tested using a local and global injection of Gaussian white noise in the network. The control gain parameter of the bath coupling can modulate the occurrence of synchronization in the network without prior requirement of direct coupling among all the cells. The process of synchronization obtained through local injection is independent of the node at which noise is injected into the system. As compared to local injection, the global injection scheme increases the range of noise amplitude for which synchronization occurs in the network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. D J Watts and S H Strogatz, Nature 394, 440 (1998)

  2. S Song, P J Sjostrom, M Reigl, S Nelson and D B Chklovskii, PLoS Biol. 3, 0507 (2005)

  3. L Donetti, P I Hurtado and M A Muñoz, Phys. Rev. Lett. 95, 188701 (2005)

  4. B Wang, T Zhou, Z L Xiu and B J Kim, Eur. Phys. J. B 60, 89 (2007)

  5. A A Selivanov, J Lehnert, T Dahms, P Hovel, A L Fradkov and E Scholl, Phys. Rev. E 85, 016201 (2012)

  6. Y Xie, Y Gong, Y Hao and X Ma, Biophys. Chem. 146, 126 (2009)

  7. F Sorrentino, New J. Phys. 14, 033035 (2012)

  8. I K Rhee, J Lee, J Kim, E Serpedin and Y C Wu, Sensors 9, 56 (2009)

  9. L Zhao, I I B Beverlin, T Netoff and D Q Nykamp, Frontiers Comput. Neurosci. 5, 1 (2011)

  10. K Lehnertz, S Bialonski, M T Horstmann, D Krung, A Rothkegel, M Staniek and T Wagner, J. Neurosci. Meth. 183, 42 (2009)

  11. H G Enjieu Kadji, J B Chabi Orou and P Woafo, Commun. Nonlinear Sci. Numer. Simul. 13, 1361 (2007)

  12. P Ashwin, Lect. Notes Phys. 671, 181 (2005)

  13. A M Dos Santos, S Lopez and R L Viana, Math. Probl. Eng. 2009, 610574 (2009)

  14. Y Chembo Kouomou and P Woafo, Phys. Rev. E 67, 046205 (2003)

  15. Z Zheng, X Feng, B Ao and M C Cross, Europhys. Lett. 87, 50006 (2005)

  16. J Zhou, H B Huang, G X Qi, P Yang and X Xie, Phys. Lett. A 335, 191 (2005)

  17. N Komin, A C Murza, E Hernández García and R Toral, Interface Focus 1, 167 (2011)

  18. L J Kocarev, K S Halle, K Eckert, U Parlitz and L O Chua, Int. J. Bifurcat. Chaos 2, 709 (1992)

  19. Y Kuramoto, Chemical oscillations, waves and turbulence (Springer-Verlag, New York, 1980)

  20. F Song, M He, M I Faley, L Fang and A M Klushin, J. Appl. Phys. 108, 063903 (2010)

  21. J Benford, H Sze, W Woo, R R Smith and B Harteneck, Phys. Rev. Lett. 62, 969 (1989)

  22. A Ishaaya, V Eckouse, L Shimshi, N Davidson and A Friesem, Opt. Express 13, 2722 (2005)

  23. S Peles, J L Rogers and K Wiesenfeld, Phys. Rev. E 73, 026212 (2006)

  24. R Yamapi, H G Enjieu Kadji and G Filatrella, Nonlinear Dynam. 61, 275 (2010)

  25. H G Enjieu Kadji, J B Chabi Orou and P Woafo, Chaos 17, 033109 (2007)

  26. C Lia, H Xu, X Liao and J Yu, Physica A 395, 359 (2004)

  27. H F El-Nashar, Y Zhang and H A Cerdeira, Chaos 13, 1216 (2003)

  28. P Woafo and H G Enjieu Kadji, Phys. Rev. E 69, 046206 (2004)

  29. E Camacho, R Rand and H Howland, Int. J. Solids Struct. 41, 2133 (2004)

  30. C T Steele, B D Zivkovic, T Siopes and H Underwood, Am. J. Physiol. Regul. Integr. Comp. Physiol. 284, 208 (2003)

  31. R J Thresher, M H Vitaterna, Y Miyamoto, A Kazantsev, D S Hsu, C Petit, C P Selby, L Dawut, O Smithies, J S Takahashi and A Sancar, Science 282, 5393 (1998)

  32. S Hattar, H W Liao, M Takao, D M Berson and K W Yau, Science 295, 5557 (2002)

  33. M K Manglapus, P M Iuvone, H Underwood, M E Pierce and R B Barlow, J. Neurosci. 19, 4132 (1999)

  34. N P A Bos and M Mirmiran, Brain Res. 511, 1 (1990)

  35. M U Gillete and S A Tischkau, Recent Prog. Hormone Res. 54, 33 (1999)

  36. B Nana and P Woafo, Phys. Rev. E 74, 046213 (2006)

  37. A H Nayfeh and D T Mook, Nonlinear oscillations (Wiley, New York, 1979)

  38. C Hayashi, Nonlinear oscillations in physical systems (McGraw-Hill, New York, 1964)

  39. H G Enjieu Kadji, R Yamapi and J B Chabi Orou, Chaos 17, 033113 (2007)

  40. H Gang, X Jinghua, G Jihua, L Xiangming, Y Yugui and B Hu, Phys. Rev. E 62, R3034 (2000)

  41. J D Menietti, O Santolik, A M Rymer, G B Hospodarsky, A M Persoon, D A Gurnett, J Coates and D T Young, J. Geophys. Res. 113, A05213 (2008)

  42. Y Takiguchi, Y Liu and J Ohtsubo, Opt. Lett. 23, 1369 (1998)

  43. J R Lieberman, A Daluiski and T A Einhorn, J. Bone. Joint. Surg. Am. 84, 1032 (2002)

  44. M Ellies, R Laskawi, G Tormahlen and W Gotz, J. Oral Maxillofac. Surg. 58, 1251 (2000)

  45. S C Jung and D A Hoffman, PLoS One 4 e6549 1–14 (2009)

  46. N Keren, D Bar-Yehuda and A Korngreen, J. Physiol. 587, 1413 (2009)

  47. M Galarreta and S Hestrin, Nature 402, 72 (1999)

  48. G Silberberg and H Markram, Neuron 53, 735 (2007)

  49. A S Landsman, E Neftci and D R Muir, New J. Phys. 14, 1 (2012)

  50. R Toral, C R Mirasso, E Hernandez-Garcia and O Piro, Chaos 11, 665 (2001)

Download references

Acknowledgements

Part of this work was completed during a research visit of Dr Nana Nbendjo at the Institute of Theoretical Physics-State University of São Paulo in Brazil. He is grateful to Brazilian Government (CNPq) for financial support within the project CNPq /PROAFRICA 490265 /2010-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HILDA A CERDEIRA.

Appendix

Appendix

The Kirchhoff’s laws for each of the oscillator are as follows:

Oscillator 1:

$$\begin{array}{@{}rcl@{}} && V_{1}-V_{2}=L_{C}\frac{\mathrm{d}I_{1}}{\mathrm{d}\tau}\\ && V_{5}-V_{1}=L_{15}\frac{\mathrm{d}I_{5}}{\mathrm{d}\tau}\\ && I_{5}=I_{5}^{\text{Osc}}+I_{1}. \end{array} $$

Oscillator 2:

$$\begin{array}{@{}rcl@{}} &&V_{2}-V_{3}=L_{C}\frac{\mathrm{d}I_{2}}{\mathrm{d}\tau}\\ &&V_{2}-V_{5}=L_{25}\frac{\mathrm{d}{I_{1}^{L}}}{\mathrm{d}\tau}\\ &&I_{1}={I_{1}^{L}}+I_{1}^{\text{Osc}}+I_{2}. \end{array} $$

Oscillator 3:

$$\begin{array}{@{}rcl@{}} &&V_{3}-V_{4}=L_{C}\frac{\mathrm{d}I_{3}}{\mathrm{d}\tau}\\ &&V_{3}-V_{5}=L_{35}\frac{\mathrm{d}{I_{2}^{L}}}{\mathrm{d}\tau}\\ && I_{2}=I_{3}+{I_{2}^{L}}+I_{2}^{\text{Osc}}. \end{array} $$

Oscillator 4:

$$\begin{array}{@{}rcl@{}} && V_{3}-V_{4}=L_{C}\frac{\mathrm{d}I_{3}}{\mathrm{d}\tau}\\ && V_{4}-V_{5}=L_{45}\frac{\mathrm{d}I_{4}}{\mathrm{d}\tau}\\ && I_{3}=I_{4}+I_{3}^{\text{Osc}}. \end{array} $$

Oscillator 5:

$$\begin{array}{@{}rcl@{}} && V_{4}-V_{5}=L_{45}\frac{\mathrm{d}I_{4}}{\mathrm{d}\tau}\\ &&V_{5}-V_{1}=L_{15}\frac{\mathrm{d}I_{5}}{\mathrm{d}\tau}\\ &&V_{2}-V_{5}=L_{25}\frac{\mathrm{d}{I_{1}^{L}}}{\mathrm{d}\tau}\\ &&V_{3}-V_{5}=L_{35}\frac{\mathrm{d}{I_{2}^{L}}}{\mathrm{d}\tau}\\ &&I_{4}=I_{5}+I_{4}^{\text{Osc}}-{I_{1}^{L}}-{I_{2}^{L}}. \end{array} $$

From the above equations, the dynamics of the network in the case of vdPol oscillators is described by the following equations:

$$\begin{array}{@{}rcl@{}} \frac{\mathrm{d}^{2}V_{1}}{\mathrm{d}\tau}&-&\frac{a_{1}}{C}\left(1\,-\,3\frac{a_{3}}{a_{1}}{V_{1}^{2}}\right)\frac{ \mathrm{d}V_{1}}{\mathrm{d}\tau}\,+\,\frac{1}{LC}V_{1} \,=\,\frac{1}{L_{C} C}(V_{2}\,-\,V_{1})\,+\,\frac{1}{L_{15}C}(V_{5}-V_{1}),\\ \frac{\mathrm{d}^{2}V_{2}}{\mathrm{d}\tau}&-&\frac{a_{1}}{C}\left(1-3\frac{a_{3}}{a_{1}}{V_{2}^{2}}\right)\frac{ \mathrm{d}V_{2}}{\mathrm{d}\tau}+\frac{1}{LC}V_{2} \\ &&=\frac{1}{L_{C} C}(V_{1}-2V_{2}+V_{3})+\frac{1}{L_{25}C}(V_{5}-V_{2}),\\ \frac{\mathrm{d}^{2}V_{3}}{\mathrm{d}\tau}&-&\frac{a_{1}}{C}\left(1-3\frac{a_{3}}{a_{1}}{V_{3}^{2}}\right)\frac{ \mathrm{d}V_{3}}{\mathrm{d}\tau}+\frac{1}{LC}V_{3} \\ &&=\frac{1}{L_{C} C}(V_{2}-2V_{3}+V_{4})+\frac{1}{L_{35}C}(V_{5}-V_{3}),\\ \frac{\mathrm{d}^{2}V_{4}}{\mathrm{d}\tau}&-&\frac{a_{1}}{C}\left(1-3\frac{a_{3}}{a_{1}}{V_{4}^{2}}\right)\frac{ \mathrm{d}V_{4}}{\mathrm{d}\tau}\,+\,\frac{1}{LC}V_{4} \,=\,\frac{1}{L_{C} C}(V_{3}\,-\,V_{4})\,+\,\frac{1}{L_{45}C}(V_{5}\,-\,V_{4}),\\ \frac{\mathrm{d}^{2}V_{5}}{\mathrm{d}\tau}&-&\frac{a_{1}}{C}\left(1-3\frac{a_{3}}{a_{1}}{V_{5}^{2}}\right)\frac{ \mathrm{d}V_{5}}{\mathrm{d}\tau}+\frac{1}{LC}V_{5} \\ &&\!\!\!\!\!\!\!=\frac{1}{L_{15}C}(V_{1}\,-\,V_{5})\,+\,\frac{1}{L_{25}C}(V_{2}\,-\,V_{5}{\kern-.5pt})\,+\,\frac{1}{L_{35}C}(V_{3}\!{\kern-.2pt}-{\kern-.2pt}\!V_{5})\,+\,\frac{1}{L_{45}C}(V_{4}\!{\kern-.2pt}-{\kern-.2pt}\!V_{5}), \end{array} $$

where

$$\begin{array}{@{}rcl@{}} && \mu=a_{1}\sqrt{\frac{L}{C}},\quad \omega^{2}=\frac{1}{LC},\quad V_{\kappa}=\sqrt{\frac{a_{1}}{3a_{3}}}x_{\kappa},\quad t=\omega\tau,\\ && K=\frac{L}{L_{C}},\quad G_{i}=\frac{L}{L_{i5}},\quad 1\leq i\leq 5, \quad L_{15}=L_{25}=L_{35}=L_{45}. \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

NANA NBENDJO, B.R., ENJIEU KADJI, H.G. & CERDEIRA, H.A. Synchronization enhancement via an oscillatory bath in a network of self-excited cells. Pramana - J Phys 84, 257–272 (2015). https://doi.org/10.1007/s12043-014-0895-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-014-0895-2

Keywords

PACS Nos

Navigation