Oscillatory dynamics of a charged microbubble under ultrasound

Abstract

Nonlinear oscillations of a bubble carrying a constant charge and suspended in a fluid, undergoing periodic forcing due to incident ultrasound are studied. The system exhibits period-doubling route to chaos and the presence of charge has the effect of advancing these bifurcations. The minimum magnitude of the charge Q min above which the bubble’s radial oscillations can occur above a certain velocity c 1 is found to be related by a simple power law to the driving frequency ω of the acoustic wave. We find the existence of a critical frequency ω H above which uncharged bubbles necessarily have to oscillate at velocities below c 1. We further find that this critical frequency crucially depends upon the amplitude P s of the driving acoustic pressure wave. The temperature of the gas within the bubble is calculated. A critical value P tr of P s equal to the upper transient threshold pressure demarcates two distinct regions of ω dependence of the maximal radial bubble velocity v max and maximal internal temperature T max. Above this pressure, T max and v max decrease with increasing ω, while below P tr, they increase with ω. The dynamical effects of the charge, the driving pressure and frequency of ultrasound on the bubble are discussed.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

References

  1. [1]

    Lord Rayleigh, Philos. Mag. 34, 94 (1917)

  2. [2]

    M Plesset, J. Appl. Mech. 16, 277 (1949)

  3. [3]

    M Plesset, J. Appl. Mech. 25, 96 (1954)

  4. [4]

    E A Neppiras, Phys. Rep. 61, 159 (1980)

  5. [5]

    M Plesset and A Prosperetti, Ann. Rev. Fluid Mech. 9, 145 (1977)

  6. [6]

    C E Brennen, Cavitation and bubble dynamics (Oxford University Press, New York, 1995)

  7. [7]

    K S Suslick, Science 247, 1439 (1990)

  8. [8]

    M P Brenner, S Hilgenfeldt and D Lohse, Rev. Mod. Phys. 74, 425 (2002)

  9. [9]

    T Alty, Proc. R. Soc. (London) 106, 315 (1924)

  10. [10]

    T Alty, Proc. R. Soc. (London) A 112, 235 (1926)

  11. [11]

    M B Shiran and D J Watmough, Iranian Phys. J. 2, 19 (2008)

  12. [12]

    M B Shiran, M Motevalian, R Ravanfar and S Bohlooli, Iranian J. Pharm. Ther. 7, 15 (2008)

  13. [13]

    J B Keller and M Miksis, J. Acoust. Soc. Am. 68, 628 (1980)

  14. [14]

    J B Keller and I I Kolodner, J. Appl. Phys. 27, 1152 (1956)

  15. [15]

    A I Grigor’ev and A N Zharov, Technol. Phys. 45, 389 (2000)

  16. [16]

    H A McTaggart, Philos. Mag. 27, 297 (1914)

  17. [17]

    V A Akulichev, Sov. Phys. Acoust. 12, 144 (1966)

  18. [18]

    Anthony A Atchley, J. Acoust. Soc. Am. 85, 152 (1989)

  19. [19]

    U Parlitz, V Englisch, C Scheffczyk and W Lauterborn, J. Acoust. Soc. Am. 88, 1061 (1990)

  20. [20]

    R Löfstedt, B P Barber and S J Putterman, Phys. Fluids A 5, 2911 (1993)

  21. [21]

    Z C Feng and L G Leal, Ann. Rev. Fluid Mech. 29, 201 (1997)

  22. [22]

    S Hilgenfeldt, M P Brenner, S Grossmann and D Lohse, J. Fluid Mech. 365, 171 (1998)

  23. [23]

    T Hongray, B Ashok and J Balakrishnan, Nonlinearity 27, 1157 (2014)

  24. [24]

    W Lauterborn and E Suchla, Phys. Rev. Lett. 53, 2304 (1984)

  25. [25]

    P Smereka, B Birnir and S Banerjee, Phys. Fluids 30, 3342 (1987)

  26. [26]

    W Lauterborn and U Parlitz, J. Acoust. Soc. Am. 84, 1975 (1988)

  27. [27]

    R G Holt, D F Gaitan, A A Atchley and J Holzfuss, Phys. Rev. Lett. 72, 1376 (1994)

  28. [28]

    C C Wu and P H Roberts, Proc. R. Soc. (London) A 445, 323 (1994)

  29. [29]

    K Yasui, Phys. Rev. E 56, 6750 (1997)

Download references

Acknowledgement

TH acknowledges support through Rajiv Gandhi National Fellowship from the University Grants Commission, New Delhi.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J BALAKRISHNAN.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

HONGRAY, T., ASHOK, B. & BALAKRISHNAN, J. Oscillatory dynamics of a charged microbubble under ultrasound. Pramana - J Phys 84, 517–541 (2015). https://doi.org/10.1007/s12043-014-0846-y

Download citation

Keywords

  • Charged bubble dynamics
  • acoustic cavitation
  • nonlinear oscillations
  • bifurcation diagrams
  • largest Lyapunov exponents

PACS Nos

  • 05.45.−a
  • 05.90.+m