Skip to main content
Log in

Investigation of exotic modes of spinning nuclei near 90Zr

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Recently, a digital data acquisition system with 96 channels has been set up for the Indian National Gamma Array (INGA) consisting of 24 Compton-suppressed clover detectors. The digital system provides higher throughput, better energy resolution and better stability for the multidetector Compton-suppressed clover array compared to the previous conventional system with analog shaping. A number of nuclear spectroscopic experiments have been carried out using the array. Selected results from this array will be presented which highlight different excitations of nuclei near-shell gaps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. I Y Lee, Nucl. Phys. A 520, 641c (1990)

  2. J Simpson et al, Heavy Ion Phys. 11, 159 (2000)

  3. S Frauendorf, Rev. Mod. Phys. 73, 463 (2001) J Meng and S Q Zhang, J. Phys. G: Nucl. Phys. 37, 064025 (2010)

    Google Scholar 

  4. B Cederwall et al, Nature 469, 68 (2011)

  5. E A McCutchan et al, Phys. Rev. Lett. 103, 192501 (2009)

  6. E Ideguchi et al, Phys. Rev. Lett. 87, 222501 (2001)

  7. M Ciemala et al, Acta Phys. Polonica B 42, 633 (2011)

  8. D C Zheng et al, Phys. Rev. C 42, 1004 (1990)

  9. M Bunce et al, Phys. Rev. C 87, 044337 (2013)

  10. R K Bhowmik, Proceedings of Fourth International Conference on Fission and Properties of Neutron-Rich Nuclei (World Scientific, 2007) 258 H C Jain, PramanaJ. Phys. 57(1), 21 (2001) S Muralithar et al, Nucl. Instrum. Methods A 622, 281 (2010)

  11. R Palit, H C Jain, P K Joshi, S Nagaraj, B V T Rao, S N Chintalapudi and S S Ghugre, PramanaJ. Phys. 54, 347 (2000)

    Google Scholar 

  12. T Trivedi et al, Nucl. Phys. A 834, 72c (2010)

  13. R Palit, H C Jain, P K Joshi, J A Sheikh and Y Sun, Phys. Rev. C 63, 024313 (2001)

    Google Scholar 

  14. S Lakshmi, H C Jain, P K Joshi, I Mazumdar, R Palit, A K Jain and S S Malik, Nucl. Phys. A 761, 12 (2005)

    Google Scholar 

  15. D Choudhury et al, Phys. Rev. C 82, 061308 (2010)

  16. S Sihotra et al, Phys. Rev. C 78, 034313 (2008)

  17. R Chakrabarti et al, Phys. Rev. C 80, 034326 (2009)

  18. A Chakraborty et al, Phys. Rev. C 72, 054309 (2005)

  19. R Palit, AIP Conf. Proc. 1336, 573 (2011)

    Google Scholar 

  20. H Tan et al, Nuclear Science Symposium Conference Record, NSS 08, IEEE, p. 3196 (2008)

  21. R Palit et al, Nucl. Instrum. Methods Phys. Res., Sect. A 680, 90 (2012)

    Google Scholar 

  22. J Sethi et al, Phys. Lett. B 725, 85 (2013)

  23. D Choudhury et al, Phys. Rev. C 87, 034304 (2013)

  24. P Singh et al, Phys. Rev. C 85, 054311 (2012)

  25. H Pai et al, Phys. Rev. C 85, 064313 (2012)

  26. S Saha et al, Phys. Rev. C 86, 034315 (2012)

  27. D C Radford, Nucl. Instrum. Methods A 361, 306 (1995)

    Google Scholar 

  28. E K Warburton, J W Olness, C J Lister and R W Zurmuhle, Phys. Rev. C 31, 1184 (1985)

    Google Scholar 

  29. A Nilsson and M Grecescu, Nucl. Phys. A 212, 448 (1973)

    Google Scholar 

  30. E KWarburton, JWOlness, C J Lister, J A Becker and S D Bloom, J. Phys. G 12, 1017 (1986)

  31. P Guazzoni et al, Nucl. Phys. A 697, 611 (2002)

  32. H J Kim and R L Robinson, Phys. Rev. 162, 1036 (1967)

  33. MS Greenwood, MPluta, N Anantaraman and L R Greenwood, Phys. Rev. C 11, 1995 (1975)

  34. G Duhamel-Chretien, G Perrin, C Perrin, V Comparat, E Gerlic, S Gales and C P Massolo, Phys. Rev. C 43, 1116 (1991)

    Google Scholar 

  35. E L Robinson, R C Hagenauer and E Eichler, Nucl. Phys. A 123, 471 (1969)

    Google Scholar 

  36. S Ray, N S Pattabiraman, R Goswami, S S Ghugre, A K Sinha and U Garg, Phys. Rev. C 69, 054314 (2004)

    Google Scholar 

  37. M Honma, T Otsuka, T Mizusaki and M Hjorth-Jensen, Phys. Rev. C 80, 064323 (2009)

    Google Scholar 

  38. B A Brown and A F Lisetskiy, unpublished; see also endnote (28) in B Cheal et al, Phys. Rev. Lett. 104, 252502 (2010)

  39. E Caurier, G Martnez-Pinedo, F Nowacki, A Poves and A P Zuker, Rev. Mod. Phys. 77, 427

  40. P C Srivastava and M J Ermamatov, Phys. Atomic Nuclei 76, 692 (2013)

    Google Scholar 

  41. J C Wells, ORNL Physics Division Progress, Reprt No. ORNL-6689, September 30 (1991)

Download references

Acknowledgements

The authors would like to thank the members of INGA Principal Investigating Coordination Committee and the INGA Collaboration for making the detectors available. The authors would also like to thank P C Srivastava for the shell-model calculation. Authors also acknowledge the IUAC group for providing some of the HV units for the clover detectors. This work was partially funded by the Department of Science and Technology, Government of India (No. IR/S2/PF-03/2003-I). The authors are thankful to the Pelletron and LINAC staff for providing excellent beam during all experiments of the campaign.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R PALIT.

Rights and permissions

Reprints and permissions

About this article

Cite this article

PALIT, R., SAHA, S. Investigation of exotic modes of spinning nuclei near 90Zr. Pramana - J Phys 82, 649–658 (2014). https://doi.org/10.1007/s12043-014-0713-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-014-0713-x

Keywords

PACS Nos

Navigation